
CHAPTER XI

THE EQUIANGULAR SPIRAL

The very numerous examples of spiral conformation which we
meet with in our studies of organic form are pecuUarly adapted

to mathematical methods of investigation. But ere we begin to

study them we must take care to define our terms, and we had

better also attempt some rough preliminary classification of the

objects with which we shall have to deal.

In general terms, a Spiral is a curve which, starting from

a point of origin, continually diminishes in curvature as it recedes

from that point; or, in other words, whose radius of curvature

continually increases. This definition is wide enough to include

a number of different curves, but on the other hand it excludes

at least one which in popular speech we are apt to confuse with

a true spiral. This latter curve is the simple screw, or cyhndrical

helix, which curve neither starts from a definite origin nor changes

its curvature as it proceeds. The "spiral" thickening of a woody
plant-cell, the "spiral" thread within an insect's tracheal tube, or

the "spiral" twist and twine of a climbing stem are not, mathe-

matically speaking, spirals at all, but screws or helices. They belong

to a distinct, though not very remote, family of curves.

Of true organic spirals we have no lack*. We think at once of

horns of ruminants, and of still more exquisitely beautiful molluscan

shells—in which (as Pliny says) tnagna ludentis Naturae varietas.

Closely related spirals may be traced in the florets of a sunflower;

a true spiral, though not, by the way, so easy of investigation, is seen

in the outhne of a cordiform leaf; and yet again, we can recognise

typical though transitory spirals in a lock of hair, in a staple of

woolt, in the coil of an elephant's trunk, in the "circling spires"

* A great number of spiral forms, both organic and artificial, are described

and beautifully illustrated in Sir T. A. Cook's Spirals in Nature and Art, 1903, and
Curves of Life, 1914.

t On this interesting case see, e.g. J. E. Duerden, in Science, May 25, 1934.
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of a snake, in the coils of a cuttle-fish's arm, or of a monkey's or

a chameleon's tail.

Fig. 347. The shell of Nautilus pompilius, from a radiograph: to shew the

equiangular spiral of the shell, together with the arrangement of the internal

septa. From Green and Gardiner, in Proc. Malacol. Soc. ii, 1897.

Among such forms as these, and the many others which we
might easily add to them, it is obvious that we have to do with

things which, though mathematically similar, are biologically
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speaking fundamentally different ; and not only are they biologically

remote, but they are also physically different, in regard to the causes

to which they are severally due. For in the first place, the spiral

coil of the elephant's trunk or of the chameleon's tail is, as we have

said, but a transitory configuration, and is plainly the result of

certain muscular forces acting upon a structure of a definite, and
normally an essentially different, form. It is rather a position, or

an attitude, than a form., in the sense in which we have been using

this latter term; and, unhke most of the forms which we have been

studying, it has little or no direct relation to the phenomenon of

growth.

Fig. 348. A foraminiferal shell {Pulvinnlina).

Again, there is a difference between such' a spiral conformation

as is built up by the separate and successive florets in. the sunflower,

and that which, in the snail or Nautilus shell, is apparently a single

and indivisible unit. And a similar if not identical difference is

apparent between the Nautilus shell and the minute shells of the

Foraminifera which so closely simulate it: inasmuch as the spiral

shells of these latter are composite structures, combined out of

successive and separate chambers, while the molluscan shell, though

it may (as in Nautilus) become secondarily subdivided, has grown

as one continuous tube. It follows from all this that there cannot

be a physical or dynamical, though there may well be a mathematical

law of growth, which is common to, and which defines, the spiral

form in Nautilus, in Globigerina, in the ram's horn, and in the

inflorescence of the sunflower. Nature at least exhibits in them all

^'un reflet des formes rigoureuses qu'etudie la geometrie"^
.''

* Haton de la Goupilliere, in the introduction to his important study of the

Surfaces Nautiloides, Annaes sci. da Acad. Polytechnica do Porto, Coimbra, ni, 1908.
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Of the spiral forms which we have now mentioned, every one

(with the single exception of the cordate outline of the leaf) is an
example of the remarkable curve known as the equiangular or

logarithmic spiral. But before we enter upon the mathematics of

the equiangular spiral, let us carefully observe that the whole of the

organic forms in which it is clearly and permanently exhibited,

however different they may be from one another in outward appear-

ance, in nature and in origin, nevertheless all belong, in a certain

sense, to one particular class of conformations. In the great

majority of cases, when we consider an organism in part or whole,

when we look (for instance) at our own hand or foot, or contemplate

an insect or a worm, we have no reason (or very Httle) to consider

one part of the existing structure as older than another; through

and through, the newer particles have been merged and commingled
among the old ; the outhne, such as it is, is due to forces which for

the most part are still at work to shape it, and which in shaping it

have shaped it as a whole. But the horn, or the snail-shell, is

curiously different; for in these the presently existing structure is,

so to speak, partly old and partly new. It has been conformed by
successive and continuous increments; and each successive stage of

growth, starting from the origin, remains as an integral and un-

changing portion of the growing structure.

We may go further, and see that horn and shell, though they

belong to the living, are in no sense alive*. They are by-products

of the animal; they consist of "formed material," as it is sometimes

called ; their growth is not of their own doing, hut comes of Hving

cells beneath them or around. The many structures which display

the logarithmic spiral increase, or accumulate, rather than grow.

The shell of nautilus or snail, the chambered shell of a foraminifer,

the elephant's tusk, the beaver's tooth, the cat's claws or the

canary-bird's—all these shew the same simple and very beautiful

spiral curve. And all alike consist of stuff secreted or deposited by
living cells ; all grow, as an edifice grows, by accretion of accumulated

* For Oken and Goodsir the logarithmic spiral had a profound significance, for

they saw in it a manifestation of life itself. For a like reason Sir Theodore Cook
spoke of the Curves of Life; and Alfred Lartigues says (in his Biodynamique generale,

1930, p. 60): "Nous verrons la Conchyliologie apporter une magnifique contribution

a la Stereodynamique du tourbillon vital." The fact that the spiral is always
formed of non-living matter helps to contradict these mystical conceptions.
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material; and in all alike the parts once formed remain in being,

and are thenceforward incapable of change.

In a shghtly different, but closely cognate way, the same is true

of the spirally arranged florets of the sunflower. For here again

we are regarding serially arranged portions of a composite structure,

which portions, similar to one another in form, differ in age; and

differ also in magnitude in the strict ratio of their age. Somehow
or other, in the equiangular spiral the time-element always enters

in; and to this important fact, full of curious biological as well as

mathematical significance, we shall afterwards return.

In the elementary mathematics of a spiral, we speak of the point

of origin as the pole (0) ; a straight hne having its extremity in the

pole, and revolving about it, is called the radius vector; and a

point (P), travelling along the radius vector under definite conditions

of velocity, will then describe our spiral curve.

Of several mathematical curves whose form and development

may be so conceived, the two most important (and the only two

with which we need deal) are those which are known as (1) the

equable spiral, or spiral of Archimedes, and (2) the equiangular or

logarithmic spiral.

The former may be roughly illustrated by the way a sailor

coils a rope upon the deck; as the rope is of uniform thickness, so

in the whole spiral coil is each whorl of the same breadth as that

which precedes and as that which follows it. Using its ancient

definition, we may define it by saying, that ''If a straight fine

revolve uniformly about its extremity, a point which Hkewise travels

uniformly along it will describe the equable spiral*." Or, putting

the same thing into our more modern words, "If, while the radius

vector revolve uniformly about the pole, a point (P) travel with

uniform velocity along it, the curve described will be that called

the equable spiral, or spiral of Archimedes." It is plain that the

spiral of Archimedes may be compared, but again roughly, to a

cylinder coiled up. It is plain also that a radius {r = OP), made
up of the successive and equal whorls, will increase in arithmetical

progression : and will equal a certain constant quantity (a) multiplied
* Leslie's Geometry of Curved Lines, 1821, p. 417. This is practically identical

with Archimedes' own definition (ed. Torelli, p. 219); cf. Cantor, Geschichte der
Mathematik, i, p. 262, 1880.
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by the whole number of whorls, (or more strictly speaking) multiplied

by the whole angle (6) through which it has revolved: so that

r = ad. And it is also plain that the radius meets the curve (or

its tangent) at an angle which changes slowly but continuously,

and which tends towards a right angle as the whorls increase in

number and become more and more nearly circular.

But, in contrast to this, in the equiangular spiral of the Nautilus

or the snail-shell or Globigerina, the whorls continually increase

in breadth, and do so in a steady and unchanging ratio. Our

definition is as follows: "If, instead of travelhng with a uniform

velocity, our point move along the radius vector with a velocity

increasing as its distance from the pole, then the path described is

Fig. 349. The spiral of Archimedes.

called an equiangular spiral." Each whorl which the radius vector

intersects will be broader than its predecessor in a definite ratio;

the radius vector will increase in length in geometrical progression, as

it sweeps through successive equal angles ; and the equation to the

spiral will be r = a^. As the spiral of Archimedes, in our example of

the coiled rope, might be looked upon as a coiled cyfinder, so (but

equally roughly) may the equiangular spiral, in the case of the shell,

be pictured as a cone coiled upon itself; and it is the conical shape

of the elephant's trunk or the chameleon's tail which makes them coil

into a rough simulacrum of an equiangular spiral.

While the one spiral was known in ancient times, and was

investigated if not discovered by Archimedes, the other was first
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recognised by Descartes, and discussed in the year 1638 in his letters

to Mersenne*. Starting with the conception of a growing curve

which should cut each radius vector at a constant angle—just as

a circle does—Descartes shewed how tt would necessarily follow that

radii at equal angles to one another at the pole would be in con-

tinued proportion ; that the same is therefore true of the parts cut off

from a common radius vector by successive whorls or convolutions

of the spire; and furthermore, that distances measured along the

curve from its origin, and intercepted by any radii, as at B, C, are

proportional to the lengths of these radii, OB, OC. It follows that

Fig. 350. The equiangular spiral.

the sectors cut off by successive radii, at equal vectorial angles, are

similar to one another in every respect; and it further follows that

the figure may be conceived as growing continuously without ever

changing its shape the while.

If the whorls increase very slowly, the equiangular spiral will come to look

like a spiral of Archimedes. The Nummulite is a case in point. Here we have

a large number of whorls, very narrow, very close together, and apparently of

equal breadth, which give rise to an appearance similar to that of our coiled

rope. And, in a case of this kind, we might actually find that the whorls

were of equal breadth, being produced (as is apparently the case in the

Nummulite) not by any very slow and gradual growth in thickness of a con-

tinuous tube, but by a succession of similar cells or chambers laid on, round
and round, determined as to their size by constant surface-tension conditions

and therefore of unvarying dimensions. The Nummulite must always have
a central core, or initial cell, around which the coil is not only wrapped, but

out of which it springs ; and this initial chamber corresponds to our a' in the

expression r = a' + ad cot a.

* (Euvres, ed. Adam et Tannery, Paris, 1898, p. 360.
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The many specific properties of the equiangular spiral are so

interrelated to one another that we may choose pretty well any

one of them as the basis of our definition, and deduce the others

from it either by analytical methods or by elementary geometry.

In algebra, when m^ = n, x is called the logarithm of n to the base

m. Hence, in this instance, the equation r = a^ may be written in

the form log r = 6 log a, or 6 = log r/log a, or (since a is a constant)

6 = A; log /•*. Which is as much as to say that (as Descartes dis-

covered) the vector angles about the pole are proportional to the

logarithms of the successive radii; from which circumstance the

alternative name of the "logarithmic spiral" is derivedf.

Moreover, for as many properties as the curve exhibits, so many
names may it more or less appropriately receive. ^James Bernoulli

called it the logarithmic spiral, as we still often do ; P. Nicolas called

it the geometrical spiral, because radii at equal polar angles are in

geometrical progression; Halley, the proportional spiral, because

the parts of a radius cut off by successive whorls are in continued

proportion; and lastly, Roger Cotes, going back to Descartes' first

description or first definition of all, called it the equiangular spiral J.

We may also recall Newton's remarkable demonstration that, had
the force of gravity varied inversely as the cube instead of the

square of the distance, the planets, instead of being bound to their

* Instead of r=a^, we might write r = rQa^; in which case r^ is the value of r

for zero value of 6.

f Of the two names for this spiral, equiangular and logarithmic, I used the
latter in my first edition, but equiangular spiral seems to be the better name;
for the constant angle is its most distinguishing characteristic, and that which
leads to its remarkable property of continuous self-similarity. Equiangular spiral

is its name in geometry; it is the analyst who derives from its geometrical pro-

perties its relation to the logarithm. The mechanical as well^as the mathematical
properties of this curve are very numerous. A Swedish admiral, in the eighteenth

century, shewed an equiangular spiral (of a certain angle) to be the best form for

an anchor-fluke {Sv. Vet. Akad. Hdl. xv, pp. 1-24, 1796), and in a parrot's

beak it has the same efl&ciency. Macquorn Rankine shewed its advantages in

the pitch of a cam or non-circular wheel {^Manual of Mechanics, 1859, pp. 99-102;
cf. R. C. Archibald, Scripta Mathem. m (4), p. 366, 1935).

X James Bernoulli, in Acta Eruditorum, 1691, p. 282; P. Nicolas, De novis

spiralibus, Tolosae, 1693, p. 27; E. Halley, Phil. Trans, xix, p. 58, 1696; Roger
Cotes, ibid. 1714, and Harmonia Mensurarum, 1722, p. 19. For the further history

of the curve see (e.g.) Gomes de Teixeira, Traite des courbes remarqicables, Coimbre,
1909, pp. 76-86; Gino Loria, Spezielle algebrdische Kurven, ii, p. 60 scq., 1911;
R. C. Archibald (to whom I am much indebted) in Amer. Mathem. Monthly, xxv,
pp. 189-193, 1918, and in Jay Hambidge's Dynamic Symmetry, 1920, pp. 146-157.
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ellipses, would have been shot off in spiral orbits from the sun, the

equiangular spiral being one case thereof.*

A singular instance of the same spiral is given by the route which

certain insects follow towards a candle. Owing to the structure

of their compound eyes, these insects do not look straight ahead

but make for a light which they see abeam, at a certain angle.

As. they continually adjust their path to this constant angle, a spiral

pathway brings them to their destination at last|.

In mechanical structures, curvature is essentially a mechanical

phenomenon. It is found in flexible structures as the result of

Fig. 351. Spiral path of an insect,

as it draws towards a light.

From Wigglesworth (after van
Buddenbroek).

Fig. 352. Dynamical aspect

of the equiangular spiral.

bending, or it may be introduced into the construction for the

purpose of resisting such a bending-moment. But neither shell nor

tooth nor claw are flexible structures ; they have not been bent into

their pecuhar curvature, they have grown into it.

We may for a moment, however, regard the equiangular or logarithmic

spiral of our shell from the dynamical point of view, by looking on growth

itself as the force concerned. In the growing structure, let growth at any
point P be resolved into a force F acting along the line joining P to a pole 0,

and a force T acting in a direction perpendicular to OP; and let the magnitude
of these forces (or of these rates of growth) remain constant. It follows that

* Principia, I, 9; ii, 15, On these "Cotes's spirals" see Tait and Steele, p. 147.

t Cf. W. Buddenbroek, Sitzungsber. Heidelb. Akad., 1917; V. H. Wigglesworth,

Insect Physiology, 1839, p. 167.



XI] IN ITS DYNAMICAL ASPECT 757

the resultant of the forces F and T (as PQ) makes a constant angle with

the radius vector. But a constant angle between tangent and radius vector

is a fundamental property of the "equiangular" spiral: the very property

with which Descartes started his investigation, and that which gives its

alternative name to the curve.

In such a spiral, radial growth and growth in the direction of the curve

bear a constant ratio to one another. For, if we consider a consecutive

radius vector, 0P\ whose increment as compared with OP is dr, while ds is

the small arc PP', then dr/ds = cos a = constant.

In the growth of a shell, we can conceive no simpler law than

this, namely, that it shall widen and lengthen in the same unvarying

proportions: and this simplest of laws is that which Nature tends

to follow. The shell, hke the creature within it, grows in size

but does not change its shape; and the existence of this constant

relativity of growth, or constant similarity of form, is of the essence,

and may be made the basis of a definition, of the equiangular spiral*.

Such a. definition, though not commonly used by mathematicians,

has been occasionally employed; and it is one from which the other

properties of the curve can be deduced with great ease and sim-

plicity. In mathematical language it would run as follows: "Any
[plane] curve proceeding from a fixed point (which is called the

pole), and such that the arc intercepted between any two radii at

a given angle to one another is always similar to itself, is called an

equiangular, or logarithmic, spiral."

In this definition, we have the most fundamental and "intrinsic"

property of the curve, namely the property of continual similarity,

and the very property by reason of which it is associated with

organic growth in such structures as the horn or the shell. For it

is peculiarly characteristic of the spiral shell, for instance, that it

does not alter as it grows ; each increment is similar to its predecessor,

and the whole, after every spurt of growth, is just Uke what it was

before. We feel no surprise when the animal which secretes

the shell, or any other animal whatsoever, grows by such sym-

metrical expansion as to preserve- its form unchanged; though even

there, as we have already seen, the unchanging form denotes a nice

balance between the rates of growth in various directions, which is

* See an interesting paper by W. A. Whitworth, The equiangular spiral, its chief

properties proved geometrically, Messenger of Mathematics (1), i, p. 5, 1862. The
celebrated Christian Wiener gave an explanation on these lines of the logarithmic

spiral of the shell, in his highly original Grundzuge der Weltordnung, 1863.
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but seldom accurately maintained for long. But the shell retains

its unchanging form in spite of its asymmetrical growth; it grows

at one end only, and so does the horn. And this remarkable

property of increasing by terminal growth, but nevertheless retaining

.unchanged the form of the entire figure, is cnaracteristic of the

equiangular spiral, and of no other mathematical curve. It well

deserves the name, by which James Bernoulli was wont to call it,

of spira mirahilis.

We may at once illustrate this curious phenomenon by drawing

the outline of a Uttle Nautilus shell within a big one. We know,

or we may see at once, that they are of precisely the same shape

;

so that, if we look at the little shell through a magnifying glass,

it becomes identical with the big one. But we know, on 'the other

hand, that the little Nautilus shell grows into the big one, not by
growth or magnification in all parts and directions, as when the boy

grows into the man, but by growing at one end only.

If we should want further proof or illustration of the fact that the spiral

shell remains of the same shape while increasing in magnitude by its terminal

growth, we may find it by help of our ratio W : L^, which remains constant

so long as the shape remains unchanged. Here are weights and measurements
of a series of small land-shells {Clausilia):*

W (mgm.) L (mm.) </lf/L

50
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any cone; for evidently, in Fig. 353, the little inner cone (repre-

sented in its triangular section) may become identical with the larger

one either by magnification all round (as in a), or by an increment

at one end (as in b) ; or for that matter on the rest of its surface,

represented by the other two sides, as in c. All this is associated

with the fact, which we have already noted, that the Nautilus shell

is but a cone rolled up; that, in other words, the cone is but a

particular variety, or "hmiting case," of the spiral shell.

This singular property of continued similarity, which we see in

the cone, and recognise as characteristic of the logarithmic spiral,

would seem, under a more general aspect, to have engaged the

particular attention of ancient mathematicians even from the days

of Pythagoras, and so, with little doubt, from the still more ancient

days of that Egyptian school whence he derived the foundations of

his learning*; and its bearing on our biological problem of the

shell, however indirect, is close enough to deserve our very careful

consideration.

There are certain things, says Aristotle, which suffer no alteration

(save of magnitude) when they growf . Thus if we add to a square

an L-shaped portion, shaped Hke a carpenter's square, the resulting

figure is still a square ; and the portion which we have so added, with

this singular result, is called in Greek a "gnomon."
EucUd extends the term to include the case of any parallelogram J,

whether rectangular or not (Fig.^ 354); and Hero of Alexandria

* I am well aware that the debt of Greek science to Egypt and the East is

vigorously denied by many scholars, some of whom go so far as to believe that the

Egyptians never had any science, save only some "rough rules of thumb for

measuring fields and pyramids" (Burnet's Greek Philosophy, 1914, p. 5).

t Categ. 14, 15a, 30: ?(Ttl tipo. av^au6fxeva a ouk dWoiourat, olov to Terpdyuvop,

•)vu)ixouo^ wepiTedevTo^, rjv^rjrat. fiiv dWoidrepov 5e oudev yeyiurjTai.

I Euclid (II, def. 2).
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specifically defines a gnomon (as indeed Aristotle had implicitly

defined it), as any figure which, being added to any figure what-

soever, leaves the resultant figure similar to the original. Included

in this important definition is the case of numbers, considered

geometrically; that is to say, the clbrjTLKot apiOixol, which can be

translated into fwm, by means of rows of dots or other signs (cf.

Arist. Metaph. 1092 b 12), or in the pattern of a tiled floor: all

according to "the mystical way of Pythagoras, and the secret

Fig. 354. Gnomonic figures.

magick ot numbers." For instance, the triangular numbers, 1, 3,

6, 10 etc., have the natural numbers for their "differences"; and

so the natural numbers may be called their gnomons, because they

keep the triangular numbers still triangular. In hke manner the

square numbers have the successive odd numbers for their gnomons,

as follows:

0+ 1- P
P + 3 = 22

22 + 5 = 32

32 + 7 = 42 etc.

And this gnomonic relation we may illustrate graphically {axr]fJiaTo-

ypa<f>¤tv) by the dots whose addition keeps the annexed figures

perfect squares*:

• • • • • •
• • • • •

There are other gnomonic figures more curious still. For example,

if we make a rectangle (Fig. 355) such that the two sides are in the

* Cf. Treutlein, Ztschr. /. Math. u. Phya. {Hist. litt. Abth.), xxviii, p. 209, 1883.
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ratio of 1 : a/2, it is obvious that, on doubling it, we obtain a similar

figure; for 1 : V2 : : a/2 : 2; and each half of the figure, accordingly,

is now a gnomon to the other. Were we to make our paper of such

a shape (say, roughly, 10 in. x 7 in.), we might fold and fold it,

and the shape of folio, quarto and octavo pages would be all the

same. For another elegant example, let us start with a rectangle

(A) whose sides are in the proportion of the "divine" or "golden

section*" that is to say as 1 : J {Vb — 1), or, approximately, as

1:0-618.... The gnomon to this rectangle is the square (B)

erected on its longer side, and so on successively (Fig. 356).
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many interesting geometrical constructions, such as the regular

pentagon, and its mystical "pentalpha," and a whole range of other

curious figures beloved of the ancient mathematicians *
: culminating

A

C B C B
Fig. 357. Fig. 358.

in the regular, or pentagonal, dodecahedron, which symbolised the

universe itself, and with which Euclidean geometry ends.

If we take any one of these figures, for instance the isosceles

triangle which we have just described, and add to it (or subtract

Fig. 359.

from it) in succession a series of gnomons, so converting it into larger

and larger (or smaller and smaller) triangles all similar to the first,

we find that the apices (or other corresponding points) of all these

* See, on the mathematical history of the gnomon, Heath's Euclid, i, passim,

1908; Zeuthen, Theoreme de Pythagore, Geneve, 1904; also a curious and
interesting book, Das Theorem des Pythagoras, by Dr H. A. Naber, Haarlem, 1908.
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triangles have their locus upon a equiangular spiral: a result which

follows directly froni that alternative definition of the equiangular

spiral which I have quoted from Whitworth (p. 757).

If in this, or any other isosceles triangle, we take corresponding

median lines of the successive triangles, by joining C to the mid-'

point (M) of AB, and D to the mid-point (N) of BC, then the pole

of the spiral, or centre of similitude of ABC and BCD, is the point

of intersection of CM and DN*.
Again, ,we may build up a series of right-angled triangles, each

of which is a gnomon to the preceding figure; and here again, an

equiangular spiral is the locus of corresponding points in these suc-

cessive triangles. And lastly, whensoever we fill up space with a

collection of equal and similar figures, as in Figs. 360, 361, there

we can always discover a series of equiangular spirals in their

successive multiples*)*.

Once more, then, we may modify our definition, and say that:

"Any plane curve proceeding from a fixed point (or pole), and such

that the vectorial area of any sector is always a gnomon to the

whole preceding figure, is called an equiangular, or logarithmic,

spiral." And we may now introduce this new concept and nomen-

clature into our description of the Nautilus shell and other related

organic forms, by saying that: (1) if a growing structure be built

up of successive parts, similar in form, magnified in geometrical

progression, and similarly situated with respect' to a centre of

similitude, we can always trace through corresponding points a

series of equiangular spirals; and (2) it is characteristic of the

* I owe this simple but novel construction, like so much else, to Dr G. T. Bennett.

t In each and all of these gnomonic figures we may now recognise a never-

ending polygon, with equal angles at its corners, and with its successive sides in

geometrical progression; and such a polygon we may look upon as the natural

precursor of the equiangular spiral. If we call the exterior or "bending" angle

of th'^ polygon j3, and the ratio of its sides A, then the vertices lie on an equiangular

spiral of angle a, given by logg A = j3 cot a. In the spiral of Fig. 359 the constant

angle is thus found to be about 75° 40', in "that of Fig. 355, 77° 40', and in that of

Fig. 356, 72° 50'.

The calculation is as follows. Taking, for example, the successive triangles of

Fig. 359, the ratio (A) of the sides, as BC : AC, is that of the golden section, 1

:

1-618.

The external angle (^), as ADB, is 108° , or in radians 1-885. Then

log 1-618=0-209, from which log, 1-618=0-481

and cota =!^=^^=0-255 = cot75° 4y.
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growth of the horn, of the shell, and of all other organic forms in

which an equiangular spiral can be recognised, that each successive

increment of growth is similar, and similarly magnified, and similarly

1
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outline of the shell or of the horn we can always inscribe an endless

variety of other gnomonic figures, having no necessary relation,

save as a mathematical accident, to the nature or mode of develop-

ment of the actual structure*. But observe that the gnomons to

a square may form increments of any size, and the same is true of

the gnomons to a Haliotis-sheW ; but" in the higher symmetry of a

chambered Nautilus, or of the successive triangles in Fig. 359,

growth goes on by a progressive series of gnomons, each one of

which is the gnomon to another.

Fig. 362. A shell of Haliotis, with two of the many hues of growtii, or generating

curves, marked out in black: the areas bounded by these hnes of growth being

in all cases gnomons to the pre-existing shell.

Of these three propositions, the second is of great use and

advantage for our easy understanding and simple description of

the molluscan shell, and of a great variety of other structures whose

mode of growth is analogous, and whose mathematical properties

are therefore identical. We see that the successive chambers of a

spiral Nautilus or of a straight Orthocems, each whorl or part of a

whorl of a periwinkle or other gastropod, each new increment of the

operculum of a gastropod, each additional increment of an elephant's

tusk, or each new chamber of a spiral foraminifer, has its leading

characteristic at once described and its form so far explained by the

* For many beautiful geometrical constructions based on the molluscan shell,

see S. Colman and C. A. Coan, Nature a Harmonic Unity (ch. ix, Conchology),

New York, 1912.
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simple statement that it constitutes a gnomon to the whole previously

existing structure. And herein lies the explanation of that "time-

element" in the development of organic spirals of which we have

spoken already; for it follows as a simple corollary to this theory

M^iZ

Fig. 363. A spiral foraminifer {Pnlvinulina), to shew how each successive chanibei

continues the symmetry of, or constitutes a gnomon to, the rest of the structure.

of gnomons that we nmst never expect to find the logarithmic spiral

manifested in a structure whose parts are simultaneously produced,

as for instance in the maririn of a leaf, or among the many curves

that make the contour of a fish. But we most look for it wherever

,
-

' the organism retains, and still presents

at a single view, the successive phases of

preceding growth : the successive magni-

tudes attained, the successive outhnes

occui)ied, as growth pursued the even

tenor of its way. And it follows from

this that it is in the hard parts of

organisms, and not the soft, fleshy,

actively growing parts, that this spiral

is commonly and characteristically

found: not in the fresh mobile tisssue

whose form is constrained merely by

the active forces of the moment; but

in things like shell and tusk, and horn and claw, visibly composed

Fig. 364. Another spiral fora-.

minifer, Cristellaria.
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of parts successively and permanently laid down. The shell-less

molluscs are never spiral; the snail is spiral but not the slug*. In

short, it is the shell which curves the sr^ail, and not the snail which

curves the shell. The logarithmic spiral is characteristic, not of the

hving tissues, but of the dead. And for the same reason if will

always or nearly always be accompanied, and adorned, by a pattern

formed of "hues of growth," the lasting record of successive stages

of form and magnitude!.

The cymose inflorescences of the botanists are analogous in a

curious and instructive way to the equiangular spiral.

In Fig. 365 B (which represents the Cicinnus of Schimper, or cyme unipare

scorpioide of Bravais, as seen in the Borage), we begin with a primary shoot

from which is given off, at a certain definite angle,

a secondary shoot: and from that in turn, on the

same side and at the same angle, another shoot, and
so on. The deflection, or curvature, is continuous

and progressive, for it is caused by no external

force but only by causes intrinsic in the system.

And the whole system is symmetrical: the angles

at which the successive shoots are given off being

all equal, and the lengths of the shoots diminishing

in constant ratio. The result is that the successive

shoots, or successive increments of growth, are

tangents to a curve, and this curve is a true

logarithmic spiral. Or in other words, we may
regard each successive shoot as forming, or defining,

a gnomon to the preceding structure. While in

this simple case the successive shoots are depicted

as lying in a plane, it may also happen that, in addition to their successive

angular divergence from one another wildiin that plane, they also tend to

Fig. 365. A, a helicoid;

B, jbl scorpioid cyme.

* Note also that Chiton, where the pieces of the shell are disconnected, shews
no sign of spirality.

t That the invert to an equiangular spiral is identical with the original curve

does not concern us in our study of organic form, but it is one of the most beautiful

and most singular properties of the curve. It was this which led James Bernoulli,

in imitation of Archimedfes, to have the logarithmic spiral inscribed upon his tomb;
and on John Goodsir's grave near Edinburgh the same symbol is reinscribed.

Bernoulli's account of the matter is interesting and remarkable: "Cum autem
ob proprietatem tam singularem tamque admirabilem mire mihi placeat spira

haec mirabilis, sic ut ejus contemplatione satiari vix nequeam: cogitavi iUam
ad varias res symbolice repraesentandas non inconcinne adhiberi posse. Quoniam
enim semper sibi et eandera spiram gignit, utcunque volvatur. evjlvatur, radiet,

hinc poterit esse vei sobolis parentibus per omnia similis Emblema: Simillima

Filia Matri; vel (si rem aeternae veritatis Fidel mysteriis accommodare non eat
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diverge by successive equal angles from that plane of reference; and by
this means, there will be superposed upon the equiangular spiral a twist or

screw. And, in the particular case where this latter angle of divergence is

just equal to 180° , or two right angles, the successive shoots will once more
come to lie in a plane, but they will appear to come off from one another on
alternate sides, as in Fig. 365 A. This is the Schrauhel or Bostryx of Schimper,

the cyme unipare helicoide of Bravais. The equiangular spiral is still latent

in it, as in the other; but is concealed from view by the deformation resulting

from the helicoid. Many botanists did not recognise (as the brothers Bravais

did) the mathematical significance of the latter case, but were led by the

snail-like spiral of the scorpoid cyme to transfer the name "helicoid" to it*.

The spiral curve of the shell is, in a sense, a vector diagram of its

own growth; for it shews at each instant of time the direction,

radial and tangential, of growth, and the unchanging ratio of

velocities in these directions. Regarding the actual velocity of

growth in the shell, we know very little by way of experimental

measurement; but if we make a certain simple assumption, then

we may go a good deal further in our description of the equiangular

spiral as it appears in this concrete case.

Let us make the assumption that similar increments are added

to the shell in equal times; that is to say, that the amount of

growth in unit time is measured by the areas subtended by equal

angles. Thus, in the outer whorl of a spiral shell a definite area

marked out by ridges, tubercles, etc., has very different linear

dimensions to the corresponding areas of an inner whorl, but the

symmetry of the figure imphes that it subtends an equal angle

with these; and it is reasonable to suppose that the successive

regions, marked out in this way by successive natural boundaries

or patterns, are produced in equal intervals of time.

prohibitum) ipsius aeternae generationis Filii, qui Patris veluti Imago, et ab illo ut

Lumen a Lumine emanans, eidem bixoLovaLo% existit, qualiscunque adumbratio. Aut,

si mavis, quia Curva nostra mirabilis in ipsa mutatione semper sibi constantissime

manet similis at numero eadem, poterit esse vel fortitudinis et constantiae in

adversitatibus, vel etiam Carnis nostrae post varias alterationes et tandem ipsam
quoque mortem, ejusdem numero resurrecturae symbolum: adeo quidem, ut si

Archimedem imitandi hodiernum consuetudo obtineret, libenter Spiram hanc tumulo
meo juberem incidi, cum Epigraphe, Eadem numero mutata resurgeV; Acta Erudi-
torum, M. Mali, 1692, p. 213. Cf. L. Isely, Epigraphes tumulaires de mathe-
maticiens, Bull. Soc. Set. nat. Neuchdtel. xxvii, p. 171, 1899.

* The names of these structures have been often confused and misunderstood

;

cf. S. H. Vines, The history of the scorpioid cyme, Journ. Bot. (n.s.), x, pp. 3-9,

1881.
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If this be so, the radii measured from the pole to the boundary
of the shell will in each case be proportional to the velocity of

growth at this point upon the circumference, and at the time when
it corresponded with the outer hp, or region of active growth ; and
while the direction of the radius vector corresponds with the

direction of growth in thickness of the animal, so does the tangent

to bhe curve correspond with the direction, for the time being, of

the animal's growth in length. The successive radii are a measure

of the acceleration of growth, and the spiral curve of the shell

itself, if the radius rotate uniformly, is no other than the hodograph

of the growth of the contained organism*.

So far as we have now gone, we have studied the elementary

properties of the equiangular spiral, including its fundamental

property of continued si?nilarity; and we have accordingly learned

that the shell or the horn tends necessarily to assume the form

of this mathematical figure, because in these structures growth

proceeds by successive increments which are ailways similar in

form, similarly situated, and of constant relative magnitude one

to another. Our chief objects in enquiring further into the mathe-

matical properties of the equiangular spiral will be: (1) to find

means of confirming and verifying the fact that the shell (or other

organic curve) is actually an equiangular spiral; (2) to learn how,

by the properties of the curve, we may further extend our knowledge

or simphfy our descriptions of the shell; and (3) to understand the

factors by which the characteristic form of any particular equiangular

spiral is determined, and so to comprehend the nature of the specific

or generic differences between one spiral shell and another.

Of the elementary properties of the equiangular spiral the

following are those which we may most easily investigate in the

concrete case of the molluscan shell: (1) that the polar radii whose

vectorial angles are in arithmetical progression are themselves in

geometrical progression; hence (2) that the vectorial angles are pro-

portional to the logarithms of the corresponding radii ; and (3) that

the tangent at any point of an equiangular spiral makes a constant

angle (called the angle of the spiral) with the polar radius vector.

* The hodograph of a logarithmic spiral (i.e. of a point which lies on a uniformly

revolving radius and describes a logarithmic spiral) is likewise a logarithmic spiral

:

W. Walton, Collection of Problerha in Theoretical Mechanics (3rd ed.), 1876, p. 296.
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The first of these propositions may be written in a simpler form,

as follows: radii which form equal angles about the pole of the

equiangular spira] are themselves continued proportionals. That
is to say, in Fig. 366, when the angle ROQ is equal

to the angle QOP, then OP:OQ::OQ: OR.
A particular case of this proposition is when the

equal angles are each angles of 360° : that is to say

when in each case the radius vector makes a complete

revolution, and when, therefore, P, Q and R all he

upon tjie same radius.

It was by observing with the help of very careftil

measurement this continued proportionality, that

Moseley was enabled to verify his first assumption,

based on the general appearance of the shell, that

the shell of Nautilus was actually an equiangular

spiral, and this demonstration he was soon after-
Via ^ftfi

wards in a position to generalise by extending it to

all spiral Ammonitoid and Gastropod mollusca*. For, taking a

median transverse section of a Nautilus pompilius, and carefully

measuring the successive breadths of the whorls (from the dark line

which marks what was originally the outer surface, before it was

covered up Tjy fresh deposits on the part of the growing and

advancing shell), Moseley found that "the distance of any two of its

whorls measured upon a radius vector is one-third that of the two

next whorls measured upon the same radius vectorf. Thus (in

* The Rev. H. Moseley, On the geometrical forms of turbinated and discoid

shells, Phil. Trans. 1838, Pt. i, pp. 351-370. Reaumur, in describing the snail-shell

(Mem. Acad, des Sci. 1709, p. 378), had a glimpse of the same geometrical law:
" Le diametre de chaque tour des spirale, ou sa plus grande longueur, est a peu pres

double de celui qui la precede et la moitie de celui qui la suit." Leslie (in his

Geometry of Curved Lines, 1822, p. 438) compared the "general form and the

elegant septa of the Nautilus'" to an equiangular spiral and a series of its involutes.

f It will be observed that here Moseley, speaking as a mathematician and
considering the linear spiral, speaks of whorls when he means the linear boundaries,

or lines traced by the revolving radius vector; while the conchologist usually

applies the term whorl to the whole space between the two boundaries. As con-

chologists, therefore, we call the breadth of a whorl what Moseley looked updn as

the distance between two consecutive whorls. But this latter nomenclature Moseley
himself often uses. Observe also that Moseley gets a very good approximate result

by his measurements "upon a radius vector," although he has to be content with

a very rough determination of the pole.
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Fig. 367), ab is one-third of 6c, de of e/, gh of hi, and kl of Im. The
curve is therefore an equiangular spiral."

The numerical ratio in the case of the Nautilus happens to be

one of unusual simplicity. Let us take, with ^oseley, a somewhat

more complicated example.

Fig. 367. Spiral of the Naviilua.

Fig. 368. Turritella dupli-

cata (L.), Moseley's

. Turbo duplicatus. From
Chenu. x ^.

From the apex of a large Turritella {Turbo) duplicata* a line

was drawn across its whorls, and their widths were measured upon
it in succession, beginning with the last but one. The measure-

* In the case of ''Turbo'", and all other turbinate shells, we are dealing not with
a plane logarithmic spiral, as in Nautilus, but with a "gauche" spiral, such that
the radius vector no longer revolves in a plane perpendicular to the axis of the
system, but is inclined to that axis at some constant angle (j3). The figure still

preserves its continued similarity, and may be called a logarithmic spiral in space;

indeed it is commonly spoken of as a logarithmic spiral wrapped upon a cone, its pole

coinciding with the apex of the cone. It follows that the distances of successive

whorls of the spiral measured on the same straight Line passing through the apex
of the cone are in geometrical progression, and conversely; just as in the former
case. But the ratio between any two consecutive interspaces (i.e. ^3 - R2IR2 - Ri)
is now equal to e^'^^i^^cota^^ being the semi-angle of the enveloping cone. (Cf.

Moseley, Phil. Mag. xxi, p. 300, 1842.)
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ments were, as before, made with a fine pair of compasses and a

diagonal scale. The sight was assisted by a magnifying glass.

In a parallel colimin to the following admeasurements are the

terms of a geometric progression, whose first term is the width of

the widest whorl measured, and whose common ratio is 1-1804.

Turritella duplicata

Widths of successive Terms of a geometrical progression,

whorls, measured in whose first term is the width of
inches and parts the widest whorl, and whose

of an inch common ratio is 1-1804

1-31 1-310
1-12 1110
0-94 0-940
0-80 0-797
0-67 0-675
0-57 0-572
0-48 0-484
0-41 0-410

The close coincidence between the observed and the calculated

figures is very remarkable, and is amply sufiicient to justify the

conclusion that we are here deaUng with a true logarithmic spiral*.

Nevertheless, in order to verify his conclusion still further,

and to get partially rid of the inaccuracies due to successive small

measurements, Moseley proceeded to investigate the same shell,

measuring not single whorls but groups of whorls taken several

at a time: making use of the following property of a geometrical

progression, that ''if /x represent the ratio of the sum of every

even number (m) of its terms to the sum of half that number of

terms, then the common ratio (r) of the series is represented by
the formula

2

r={fjL- 1)^."

* Moseley, writing a hundred years ago, uses an obsolete nomenclature which
is apt to be very misleading. His Turbo duplicatus, of Linnaeus, is now Turritella

duplicata, the common large Indian Turritella, a slender, tapering shell with a

very beautiful spiral, about six or seven inches long. But the operculum which
he describes as that of Turbo does indeed belong to that genus, sensu stricto; it is

the well-known calcareous operculum or "eyestone" of some such common species

as Turbo petholatus. Turritella has a very different kind of operculum, a thin

chitinous disc in the form of a close spiral coil, not nearly fiUing up the aperture
of the shell. Moseley's Turbo phasianus is again no true Turbo, but is (to judge
from his figure) Phasianella bulimoides Lam. =P. australis (Gmelin); and his

Buccinum aubulatum is Terebra subulata (L.).
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Accordingly, Moseley made the following measurements, begin-

ning from the second and third whorls respectively:

Width of Ratio fi

Six whorls
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Lastly, we may if we please, in this simple case, reduce the whole

matter to arithmetic, and, dividing the width of each whorl by
that of the next, see that these quotients are nearly identical, and

that their mean value, or common ratio, is precisely that which

we have already found.

We may shew, in the same simple fashion, by measurements

of Terebra (Fig. 397), how the relative widths of successive whorls

fall into a geometric progression, the criterion of a logarithmic

spiral. ^

Measurements of a large specimen (15-5 cm.) of Terebra maculata,

along three several tangents (a, 6, c) to the whorls. {After Chr.

Peterson, 1921.)

Width (mm.)
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in (e.g.) Nerita (Fig. 371); that is to say, apart from the side con-

stituting the outer edge of the operculum (which side is always and

of necessity curved) the successive increments constitute curvihnear

Fig. 369. Operculum of Turbo.

triangles in the one case, and rectilinear triangles in the other.

The sides of these triangles are tangents to the spiral Une of the

Fig. 370. Fig. 371.

Figs. 370, 371. Opercula of Turbo and Nerita. After Moseley.

operculum, and may be supposed to generate it by their consecutive

intersections.

In a number of such opercula, Moseley measured the breadths
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of tlie successive whorls along a radius vector*, just in the same

way as he did with the entire shell in the foregoing cases;

here is one example of his results.

Operculum of Turbo sp. ; breadth {in inches) of successive

whorls, mea^redfrom the pole

and

Distance
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apparent complication and difficulty. But God hath bestowed

upon this humble architect the practical skill of a learned geo-

metrician, and he makes this provision with admirable precision

in that curvature of the logarithmic spiral which he gives to the

section of the shell. This curvature obtaining, he has only to turn

his operculum shghtly round in its own plane as he advances it

into each newly formed portion of his chamber, to adapt one margin

of it to a new and larger surface and a different curvature, leaving

the space to be filled up by increasing the operculum wholly on

the other margin." The fact is that self-similar or gnomonic growth

is taking place both in the shell and its operculum; in both of them

growth is in reference to a fixed centre, and to a fixed axis through

that centre; and in both of them growth proceeds in geometric

progression from the centre while rotation takes place in arithmetic

progression about the axis. The same architecture which builds

the house constructs the door. Moreover, not only are house and

door governed by the same law of growth, but, growing together,

door and doorway adapt themselves to one another.

The operculum of the gastropods varies from a more or less close-wound

spiral, as in Turritella, Trochus or Pleurotomaria, to cases in which accretion

takes place, by concentric (or more. or less excentric) rings, all round. But

these latter cases, so Mr Winckworth tells me, are not very common. Paludina

and Ampullaria come near to having a concentric operculum, and so do some

of the Murices, such as M. tribulus, and a few Turrids, and the genus Helicina;

but even these opercula probably begin as spirals, adding on their gnomonic

increments at one end or side, and only growing on all sides later on. There

would seem to be a truly concentric operculum in the Siphonium group of

Vermetus, where the spiral of the shell itself is lost, or nearly so; but it is

usually overgrown with Melobesia, and hard to see.

Fig. 372.

One more proposition, an all but self-evident one, we may make
passing mention of here: If upon any polar radius vector OP,
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a triangle OPQ be drawn similar to a given triangle, the locus of

the vertex Q will* be a spiral similar to the original spiral. We may
extend this proposition (as given by Whitworth) from the simple

case of the triangle to any similar figures whatsoever ; and see from

it how every spot or ridge or tubercle repeated symmetrically from
one radius vector (or one generating curve) to another becomes

part of a spiral pattern on the shell.

Viewed in regard to its own fundamental properties and to those

of its hmiting cases, the equiangular spiral is one of the simplest

of all known curves ; aiid the rigid uniformity of the simple laws by
which it is developed sufficiently account for its frequent manifesta-

tion in the structures built up by the slow and steady growth of

organisms.

In order to translate into precise terms the whole form and

growth of a spiral shell, we should have to employ a mathematical

notation considerably more complicated than any that I have

attempted to make use of in this book. But we may at least try

to describe in elementary language the general method, and some of

the variations, of the mathematical development of the shell. But
here it is high time to observe that, while we have been speaking of

the shell (which is a surface) as a logarithmic spiral (which is a line),

we have been simphfying the case, in a provisional or preparatory

way. The logarithmic spiral is but one factor in the case, albeit

the chief or dominating one. The problem is one not of plane but

of sohd geometry, and the solid in question is described by the

movement in space of a certain area, or closed curve*.

Let us imagine a closed curve in space, whether circular or

eUiptical or of some other and more complex specific form, not

necessarily in a plane: such a curve as we see before us when we
consider the mouth, or terminal orifice, of our tubular shell. Let

* For a more advanced study of the family of surfaces of which the Nautilus
is a simple case, see M. Haton de la Goupilliere {op. cit.). The turbinate shells

represent a sub-family, which may be called that of the "surfaces cerithioides "

;

and "surfaces a front generateur" is a short title of the whole family. The form of

the generating curve, its rate of expansion, the direction of its advance, and the

angle which the generating front makes with the directrix, define, and give a wide
extension to, the family. These parameters are all severally to be recognised in the

growth of the living object; and they make of a collection of shells an unusually
beautiful materialisation of the rigorous definitions of geometry.
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us call this closed curve the "generating curve"; the surface which

it bounds we may call (if need arise) the "generating front," and
let us imagine some one characteristic point within this closed

curve, such as its centre of gravity. Then, starting from a fixed

origin, let this characteristic point describe an equiangular spiral

Fig. |373. Melo ethiopicus L.

in space about a fixed axis or "conductrix" (namely the axis of the

shell), while at the same time the generating curve grows with each

increment of rotation in such a way as to preserve the symmetry
of the entire figure, with or without a simultaneous movement of

translation along the axis.

The resulting shell may now be looked upon in either of two ways.

It is, on the one hand, an ensemble gf similar closed curves, spirally

arranged in space, and gradually increasing in dimensions in pro-

portion to the increase of their vector-angle from the pole*. In
* The plumber, the copper-smith and the glass-blower are at pains to conserve

in every part of their tubular constructions, however these branch or bend, the
constant form which their cross-sections ought to have. Throughout the spiral

twisting of the shell, throughout the windings and branchings of the blood-vessels,

the same uniformity is maintained.
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other words, we can imagine our shell cut up into a system of rings,

following one another in continuous spiral succession, from that

terminal and largest one which constitutes the hp of the orifice of

the shell. Or on the other hand, we may figure to ourselves the

whole shell as made up of an ensemble of spiral lines in space, each

spiral having been traced out by the gradual growth and revolution

of a radius vector from the pole to a given point on the boundary

of the generating curve.

-r"
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the shell. And in not a few cases, as in Harpa, Dolium perdix, etc.,

both ahke are conspicuous, ridges and colour-bands^ intersecting

one another in a beautiful isogonal system.

In ordinary gastropods the shell is formed at or near the mantle-

edge. Here, near the mantle-border, is a groove Hned with a

secretory epithehum which produces the horny cuticle or perio

stracum of the shell*. A narrow zone of the mantle just behind

this secretes Hme abundantly, depositing it in a layer below the

periostracum ; and for some httle way back more hme may be

secreted, and pigment superadded from appropriate glands. Growth

and secretion are periodic rather than continuous. Even in a snail-

shell it is easy to see how the shell is built up of narrow annular

increments; and many other shells record, in conspicuous colour-

patterns, the alternate periods of rest and of activity which their

pigment-glands have undergone.

The periodic accelerations and retardations in the growth of a

shell are marked in various ways. Often we have nothing more

than an increased activity from time to time at or near the mantle-

edge—enough to give rise to shght successive ridges, each corre-

sponding to a "generating curve" in the conformation of the shell.

But in many other cases, as in Murex, Ranella and the like, the

mantle-edge has its alternate phases of rest and of turgescence, its

outline being plain and even in the one and folded and contorted

in the other; and these recurring folds or pleatings of the edge

leave their impress in the form of various ridges, ruffles or comb-like

rows of spines upon the shell f.

In not a few cases the colour-pattern shews, or seems to shew,

how some play of forces has fashioned and transformed the first

elementary pattern of pigmentary drops or jets. As the book-

binder drops or dusts a little colour on a viscous fluid, and then

produces the beautiful streamlines of his marbled papers by stirring

* That the shell grows by accretion at the mantle-edge was one of Reaumur's

countless discoveries {Mem. Acad. Roy. des Sc. 1709, p. 364 seq.). It follows

that the mathematical "generating curves," as Moseley chose them, correspond to

the material increments of the shell.

t The periodic appearance of a ridge, or row of tubercles, or other ornament

on the growing shell is illustrated or even exaggerated in the delicate "combs"
of Murex aculeatus. Here normal growth is. interrupted for the time being, the

mantle-edge is temporarily folded and reflexed, and shell-substance is poured out

into the folds.
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and combing the colloid mass, so we may see, in the harp-shells

or the volutes, how a few simple spots or hnes have been drawn out

into analogous wavy patterns by streaming movements during the

formation of the shell.

' In the complete mathematical formula for any given turbinate

shell, we may include, with Moseley, factors for the following

elements: (1) for the specific form of a section of the tube, or

(as we have called it) the generating curve; (2) for the specific rate

of growth of this generating curve; (3) for its incHnation to the

directrix, or to the axis
; (4) for its specific rate of angular rotation

about the pole, in a projection perpendicular to the axis; and

(5) in turbinate (as opposed to nautiloid) shells, for its rate of

screw-translation, parallel to the axis, as measured by the angle

between a tangent to the whorls and the axis of the shell*. It seems

a compHcated affair; but it is only a pathway winding at a steady

slope up a conical hill. This uniform gradient is traced* by any

given point on the generating curve while the vector angle increases

in arithmetical progression, and the scale changes in geometrical

progression; and a certain ensemble, or bunch, of these spiral curves

in space constitutes the self-similar surface of the shell.

But after all this is not the only way, neither is it the easiest way,

to approach our problem of the turbinate shell. The conchologist

turned mathematician is apt to think of the generating curve by

which the spiral surface is described as necessarily identical, or

coincident, with the mouth or Hp of the shell; for this is where

growth actually goes on, and where the successive increments of

shell-growth are visibly accumulated. But it does oiot follow that

this particular generating curve is chosen for the best from the

mathematical point of view; and the mathematician, unconcerned

with the physiological side of the case and regardless of the suc-

cession of the parts in time, is free to choose any other generating

curve which the geometry of the figure may suggest to him. We
are following Moseley's example (as is usually done) when we think

of no other generating curve but that which takes the form of a

* Note that this tangent touches the curve at a series of points, whorl by whorl,

instead of at one only. Observe also that we may have various tangent-cones,

all centred on the apex of the shell. In an open spiral, like a ram's horn, or a

half-open spiral like the shell Solarium, w^ have two cones, one touching the

outside, the other the inside of the shell.
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frontal plane, outlined by the lip, and sliding along the axis while

revolving round it; but the geometer takes a better and a simpler

way. For, when of two similar figures in space one is derived from

the other by a screw-displacement accompanied by change of scale

—

as in the case of a big whelk and a little whelk—there is a unique

(apical) point which suffers no displacement; and if we choose for

our generating curve a sectional figure centred on the apical point

and passing through the axis of rotation, the whole development

of the surface may be simply described as due to a rotation of this

generating figure about the axis (z), together with a change of scale

with the point as centre of simihtude. We need not, and now
must not, think of a slide or shear as part of the operation; the

translation along the axis is merely part and parcel of the magnifica-

tion of the new generating curve. It follows that angular rotation

in arithmetical progression, combined with change of scale (from 0)

in geometrical progression, causes any arbitrary point on the

generating curve to trace a path of uniform gradient round a

circular cone, or in other words to describe a helico-spiral or gauche

equiangular spiral in space. The spiral curve cuts all the straight-

fine generators of the cone at the same angle ; and it further follows

that the successive increments are, and the whole figure constantly

remains, "self-similar"*.

Apart from the specific form of the generating curve, it is the

ratios which happen to exist between the various factors, the ratio

for instance between the growth-factor and the rate of angular

revolution, which give the endless possibihties - of permutation of

form. For example, a certain rate of growth in the generating

curve, together with a certain rate of vectorial rotation, will give

us a spiral shell of which each successive whorl will just touch its

predecessor and no more; with a slower growth-factor the whorls

will stand asunder, as in a ram's horn; with a quicker growth-factor

* The equation to the surface of a turbinate shell is discussed by Moseley both
in terms of polar and of rectangular coordinates, and the method of polar co-

ordmates is used also by Haton de la Goupilliere; but both accounts are subject

to mathematical objection. Dr G. T. Bennett, choosing his generating curve
(as described above) in the axial plane from which the vertical angles are measured
(the plane ^ =0), would state his equation in cylindrical coordinates, / {za^, ra^) =0:
that is to say in terms of z, conjointly with ordinary plane cylindrical coordi-

nates.
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each will cut or intersect its predecessor, as in an Ammonite or

the majority of gastropods, and so on.

A similar relation of velocities suffices to determine the apical

angle of the resulting cone, and give us the diflFerence, for example,

between the sharp, pointed cone of Turritella, the less acute one of

Fusus or Buccinum, and the obtuse one of Harpa or^of Dolium.

In short it is obvious that all the differences of form which we
observe between one shell and another are referable to inatters of

degree, depending, one and all, upon the relative magnitudes of the

various factors in the complex equation to the curve. This is an

immensely important thing. To learn that all the multitudinous

shapes of shells, in their all but infinite variety, may be reduced to

the variant properties of a single simple curve, is a great achieve-

ment. It exemphfies very beautifully what Bacoi^ meant in saying

that the forms or differences of things are simple and few, and the

degrees and coordinations of these make all their variety*. And
after such a fashion as this John Goodsir imagined that the naturahst

of the future would determine and classify his shells, so that

conchology should presently become, hke mineralogy, a mathe-

matical science I

.

The paper in which, more than a hundred years ago, Canon Moseleyf

gave a simple mathematical account, on fines fike tfies^, of the

spiral forms of univalve shells, is one of the classics of Natural

History. But other students before, and sometimes long before,

him had begun to recognise the same simpficity of form and

structure. About the year 1818 Reinecke had declared Nautilus

to be a well-defined geometrical figure, whose chambers followed

* For a discussion of this idea, and of the views of Bacon and of J. S. Mill, see

J. M. Keynes, op. cit. p. 271.

t On the employment of mathematical modes of investigation in the determina-

tion of organic forms^ in Anatomical Memoirs, ii, p. 205, 1868 (posthumous
pubhcation).

X The Rev. Henry Moseley (1801-1872), of St John's College, Cambridge,

Canon of Bristol, Professor of Natural Philosophy in King's College, London, was
a man of great and versatile ability. He was father of H. N. Moseley, naturalist

on board the Challenger and Professor of Zoology in Oxford; and he was grand-

father of H. G. J. Moseley (1887-1915)—Moseley of the Moseley numbers—whose
death at Gallipoli, long ere his prime, was one of the major tragedies of the Four
Years War.
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one another in a constant ratio or continued proportion*; and
Leopold von Buch and others accepted and even developed the

idea.

Long before, Swammerdam had grasped with a deeper insight

the root of the whole matter; for, taking a few diverse examples,

such as Helix and Spirula, he shewed that they and all other spiral

shells whatsoever were referable to one common type, namely to

that of a simple tube, variously curved according to definite mathe-

matical laws; that all manner of ornamentation, in the way of

spines, tuberosities, colour-bands and so forth, might be superposed

upon them, but the type was one throughout and specific differences

were of a geometrical kind. "Omnis enim quae inter eas anim-

advertitur differentia ex sola nascitur diversitate gyrationum:

quibus si insuper externa quaedam adjunguntur ornamenta pin-

narum, sinuum, anfractuum, planitierum, eminentiarum, profundi-

tatum, extensionum, impressionum, circumvolutionum, colorumque

:

. . . tunc deinceps facile est, quarumcumque Cochlearum figuras

geometricas, curvosque, obliquos atque rectos angulos, ad unicam

omnes speciem redigere : ad oblongum videhcet tubulum, qui

vario modo curvatus, crispatus, extrorsum et introrsum flexus,

ita concrevitf."

Nay more, we may go back yet another hundred years and find

Sir Christopher Wren contemplating the architecture of a snail-shell,

and finding in it the logarithmic spiral. For AValhsf, after defining

and describing this curve with great care and simplicity, tells us

that Wren not only conceived the spiral shell to be a sort of cone

or pyramid coiled round a vertical axis, but also saw that on the

magnitude of the angle of the spire depended the specific form of

the shell: "Hanc ipsam curvam . . . fcontemplatus est Wrennius

noster. Nee tantum curvae longitudinem, partiumque ipsius, et

* J. C. M. Reinecke, Maris protogaei Nautilos, etc., Coburg, 1818, p. 17: "In
eius forma, quae canalis spiram convoluti formam et proportiones simul sub-

ministrat, totius testae forma quoddammodo data est. Restaret solum scire,

quota cujusque anfractus pars sequent! inclusa^it, ut testam geometrice construere

possimus." Cf. Leopold von Buch, Ueber die Ammoniten in den alteren Gebirgs-

schichten, Ahh. Berlin. Akad., Phys. Kl. 1830, pp. 135-158; Ann. Sc. Nat. xxvin,

pp. 5-43, 1833; cf. Elie de Beaumont, Sur I'enroulement des Ammonites, Soc.

Philom., Pr. verb. 1841, pp. 45-4^.

t Biblia Naturae sive Historia Insectorum, Leydae,.1737, p. 152.

X Job. Wallis, Tractatus duo, de Cydoide, etc., Oxon., 1659, pp. 107, 108.
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magnitudinem adjacentis plani; sed et, ipsius ope, Limacum et

Conchiliorum domunculos metitur. Existimat utique, magna veri-

similitudine, domunculos hosce non alios esse quam Pjrramides

convolutas: quarum Axis sit, istiusmodo Spiralis: non quidem in

piano jacens, sed sensim in convolutione (circa erectum axim)

assurgens: pro variis autem curvae, sive ad rectam circumductam

sive ad subjacens planum, " angulis, variae Conchiliorum formae

enascantur. Atque hac hjrpothesi, mensurata Pyramide, metitur

etiam ea conchiliorum spatia."

For some years after the appearance of Moseley's paper, a number
of writers followed in his footsteps, and attempted in various ways
to put his conclusions to practical use. For instance, d'Orbigny

^— ^—^^-^^^ '''•
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ako, though somewhat roughly, be determined. For instance, in

Terebra dimidiata the apical angle was found to be 13° , the sutural

angle 109° , and so forth.

It was at once obvious that, in such a shell as is represented in

Figs. 369 and 375 the entire outUne (always excepting that of

the immediate neighbourhood of the mouth) could be restored from

a broken fragment. For if we draw our tangents to the cone, it

follows from the symmetry of the figure that we can continue the

projection of the sutural hne, and so mark off the successive whorls,

by simply drawing a' series of consecutive parallels, and by then

filling into the quadrilaterals so marked off a series of curves similar

to one another, and to the whorls which are still intact in the broken

shell. But the use of the hehcometer soon shewed that it was

by no means universally the case that one and the same cone was

tangent to all the turbinate whorls; in other words, there was not

always one specific apical angle which held good for the entire

system. In the great majority of cases, it is true, the same tangent

touches all the whorls, and is a straight Hne. But in others, as in

the large Cerithium nodosum, such a hne is sKghtly concave to the

axis of the shell; and in the short spire of Doliumj for instance,

the concavity is marked, ^nd the apex of the spire is a distinct

cusp. On the other hand, in Pupa and Clausilia the conmion

tangent is convex to the axis of the shell.

So also is it, as we shall presently see, among the Ammonites:

where there are some species in which the ratio of whorl to whorl

remains, to all appearance, perfectly constant; others in which

it gi^dually though only shghtly increases; and others again in

which it slightly and gradually falls away. It is obvious that,

among the manifold possibihties of growth, such conditions as

these are very easily conceivable. It is much more remarkable

that, among these shells, the relative velocities of growth in various

dimensions should be as constant as they are than that there

should be an occasional departure from perfect regularity. In these

latter cases the logarithmic law of growth is only approximately

true. The shell is no longer to be represented simply as a cone which

has been rolled up, but as a cone which (while rolling up) had grown

trumpet-shaped, or conversely whose mouth had narrowed in, and

which in longitudinal section is a curvilinear instead of a rectihnear
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triangle. But all that has happened is that a new factor, usually

of small or all but imperceptible magnitude^ has been introduced

into the case ; so that the ratio, log r = 6 log a, is no longer con-

stant but varies shghtly, and in accordance with some simple law.

Some ' writers, such as Naumann* and Grabau, maintained that

the moUuscan spiral was no true logarithmic spiral, but differed

from it specifically, and they gave it the name of Conchospiral.

They said that the logarithmic spiral originates in a mathematical

point, while the molluscan shell starts with a Httle embryonic, shell,

or central chamber (the "protoconch" of the conchologists), around

which the spiral is subsequently wrapped. But this need not affect

the logarithmic law of the shell as a whole ; indeed we have already

allowed for it by writing our equation in the form r = ma^. And
Grabauf, while he clung to Naumann's conchospiral against

Moseley's logarithmic spiral, confessed that they were so much ahke

that ordinary measurements would seldom shew a difference between

them.

There would seem, by the way, to be considerable confusion in the books

with regard to the so-called "protoconch." In many cases it is a definite

structure, of simple form, representing the more or

less globular embyyonic shell before it began to

elongate into its conical or spiral form. But in

many cases what is described as the "protoconch"

is merely an empty space in the middle of the spiral

coil, resulting from the fact that the actual spiral

.shell must have some magnitude to begin with, and
that we cannot follow it down to its vanishing point

in infinity. For instance, in the accompanying
figure, the large space a is styled the protoconch,

but it is the little bulbous or hemispherical chamber
within it, at the end of the spire, which is the real

beginning of the tubular shell. The form and mag-

nitude of the spa^ce a are determined by the "angle of retardation," or ratio

of rate of growth between the inner and outer curves of the spiral shell. They

Fig. 376.

* C. F. Naumann, Beitrag zur Konchyliometrie, Poggend. Ann. l, p. 223, 1840;

Ueber die Spiralen der Ammoniten, ibid, li, p. 245, 1840; ibid, liv, p. 541, 1845; etc.

(See also p. 755.) Cf. also Lehmann, Die von Seyfriedsche Konchyliensammlung

und das Windungsgesetz von einigen Planorben, Constanz, 1855.

f A. H. Grabau, Ueber die Naumannsche Conchospirale, und ihre Bedeutung
fiir die Conchyliometrie, Inauguraldiss., Leipzig, 1872; Ueber die Spiralen der

Conchylien, etc., Leipzig Progr. No. 502, 1880; cf. Sb. naturf. Gesellsch. Leipzig,

1881, pp. 23-32.
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are independent of the shape and size of the embryo, and depend only (as we
shall see better presently) on the direction and relative rate of growth of the
double contour of the shell*.

rd0

Now that we have dealt, m a. general way, with some of the more
obvious properties of the equiangular or logarithmic spiral, let us

consider certain of them a httle more particularly, keeping in view

as our chief object of study the range of variation of the molluscan

shell.

There is yet another equation to the logarithmic

spiral, very commonly employed, and without the

help of which we cannot get far. It is as follows

:

This follows directly from the fact that the angle

a (the angle between the radius vector and the

tangent to the curve) is constant.

For then,

tan a (= tan
(f>)
= rdd/dr;

therefore dr/r = dO cot a,

and, integrating, log r = ^ cot a.

or
Fig. 377.

It is easy to see (we might indeed have noted it before) that the

logarithmic spiral is but a plotting in polar coordinates of increase

by compound interest. For if A be the "amount" of £1 in one year

(A = 1 + a, where a is the rate of interest), and PA the amount
of P in one year, then the whole amount, M, in t years is M = PA^\

this, provided that interest is payable once a year. But, as we are

taught by algebra, and as we have seen in our study of growth,

this formula becomes Pe"* when the intervals of time between the

payments of interest decrease without limit, that is to say, wh^n we
may consider growth to be continuous. And this formula PeP-^ is

precisely that of our logarithmic spiral, when we represent the time

* J. F. Blake (cf. infra, p. 793) says of Naumann's formula: "By such a

modification he hoped to bring the measurements of actual shells more into

harmony with calculation. The errors of observation, however, are always greater

than this change would correct—if founded on fact, which is doubtful; and all

practical advantage is lost by the compUcation of the equations."
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by a vector angle d, and when for a, the particular rate of interest

in the cas.e, we write cot a, the constant measure of growth of the

particular spiral.

As we have seen throughout our preliminary discussion, the two

most important constants (or "specific Characters," as the naturalist

would say) in an equiangular or logarithmic spiral are (1) the magni-

tude of the angle of the spiral, or "constant angle" a, and (2) the

rate of increase of the radius vector for any given angle of revolution, 6.

But our two magnitudes, that of the constant angle and that of the

ratio of the radii or breadths of whorl, are directly related to one

another, so that we may determine either of them by measurement

and calculate the other.

Fig. 378.

In any complete spiral, such as that, of Nautilus, it is (as we

have seen) easy to measure any two radii (r), or the breadths in

a radial direction of any two whorls* (If). We have then merely

to apply the formula

^"+1 ^ g^cota W.
or

«+l ^ g^cota

which we may simply write r = e^^° *", etc., when one radius or whorl

is regarded, for the purpose of comparison, as equal to unity.

Thus, in Fig. 378, OC/OE, or EF/BD, or DC/'EF, being in

each case radii, or diameters, at right angles to one another, are

-
*

all equal to e^"^" ". While in like manner, EO/OF, EG/FH, or

GO/HO, all equal e^^o^a. ^nd BC/BA, or CO/OB = e2^cota^



XI] ITS MATHEMATICAL PROPERTIES 791

As soon, then, as we have prepared tables for these values, the

determination of the constant angle a in a particular shell becomes

a very simple matter.

A complete table would be cumbrous, and it will be sufficient

to deal with the simple case of the ratio between the breadths of

adjacent, or immediately succeeding, whorls.

Here we have r = e27rcota^ qp log/ = log e x 27r x cot a, from

which we obtain the following figures*:

The shape of a nautiloid spiral

Ratio of breadth of each
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angles the apparent form of the spiral is greatly altered, and the

very fact of its being a spiral soon ceases to be apparent (Figs. 379,

380). Suppose one whorl to be an inch in breadth, then, if the

angle of the spiral were 80° , the next whorl would (as we have just

seen) be about three inches broad; if it were 70° , the next whprl

would be nearly ten inches, and if it were 60° , the next whorl would

be nearly four feet broad. If the angle were 28° , the next whorl

would be a mile and a half in breadth; and if it were 17° , the next

would be spme 15,000 miles broad.

In other words, the spiral shells of gentle curvature, or of small

constailt angle, such as Dentalium or Cristellaria, are true equi-

angular spirals, just as are those of Nautilus or Rotalia: from

Fig. 379. Fig. 380.

which they differ only in degree, in the magnitude of an angular

constant. But this diminished magnitude of the angle causes the

spiral to dilate with such immense rapidity that, so to speak,

it never comes 'round; and so, in such a shell as Dentalium, we
never see but a small portion of a single whorl.

We might perhaps be inclined to suppose that, in such a shell as Dentalium^

the lack of a visible spiral convolution was only due to our seeing but a small

portion of the curve, at a distance from the pole, and when, therefore, its

curvature had already greatly diminished. That is to say we might suppose

that, however small the angle a, and however rapidly the whorls accordingly

increased, there would nevertheless be a manifest spiral convolution in the

immediate neighbourhood of the pole, as the starting point of the curve.

But it is easy to see that it is not so. It is not that there cease to be con-

volutions of the, spiral round the pole when a is a small angle ; on the contrary,

there are infinitely many, mathematically speaking. But as a diminishes,

and cot a increases towards infinity, the ratio between the breadth of one
whorl and the next increases very rapidly. Our taTble shews us that even
when a is no less than 40° , and our shell stiU looks strongly curved, one whorl
is a thousandt'i part of the breadth of the next, and a thousandfold that
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of the one before ; we cannot expect to see either of them under the materialised

conditions of the actual shell. Our shells of small constant angle and gentle

curvature, such as Dentalium, are accordingly as much as we can ever expect

to see of their respective spirals.

The spiral whose constant angle is 45° is both a simple case and

a mathematical curiosity; for, since the tangent of 45° is unity,

we need merely write r = e^\ which is as much as to say that the

natural logarithms of the radii give us, without more ado, the

vector angles. In this spiral the ratio between the breadths of

two consecutive whorls becomes r = e^^ = e2x3-i4i6_ Reducing this

from Naperian to common logs, we have log r = 2-729; whicH tells

us (by our tables) that the radius vector is multiphed about 535J
times after a whole polar revolution; it is doubled after turning

through a polar angle of less than 40° . Spirals of so low an angle

as 45° are common enough in tooth and claw, but rare among
molluscan shells; but one or two of the more strongly curved

Dentaliums, like D. elejphantinum, come near the mark. It is not

easy to determine the pole, nor to measure the constant angle, in

forms like these.

Let us return to the problem of how to ascertain, by direct

measurement, the spiral angle of any particular shell. The method
aL-eady employed is only applicable to complete spirals, that is to

say to those in which the angle of the spiral is large, and further-

more it is inapplicable to portions, or broken fragments, of a shell.

In the case of the broken fragment, it is plain that the determination

of the angle is not merely of theoretic interest; but may be of great

practical use to the conchologist as the one and only way by which

he may restore the outline of the missing portions. We have a con-

siderable choice of methods, which have been summarised by, and
are partly due to, a very careful student of the Cephalopoda, the

late Rev. J. F. Blake*.

(1) When an equiangular spiral rolls on a straight line, the pole

traces another straight line at an ^ngle to the first equal to the

complement of the constant angle of the spiral; for the contact

point is the instantaneous centre of the rotational movement, and
the line joining, it to the pole of the spiral is normal to the roulette

path of that point. But the difficult^ of determining the pole

* On the measurement of the curves formed by Cephalopods and other MoUusks,
Phil. Mag. (5), vi, pp. 241-263, 1878.
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(which is indeed asymptotic) makfes this of Httle use as a method of

determining the constant angle. It is, however, a beautiful property

of the curve, and all the more interesting that Clerk Maxwell dis-

covered it when he was a boy*.

(2) The following method is useful and easy when we have a

portion of a single whorl, such as to shew both its inner and its

outer edge. A broken whorl of an Ammonite, a curved shell such

as Dentalium, or a horn of similar form to the latter, will fall under

this head. We have merely to draw a tangent,

GEH, to the outer whorl at any point E; then

draw to the inner whorl a tangent parallel to GEH,
touching the curve in some point F. The straight

hne joining the points of contact, EF, must
evidently pass through the pole : and^ accordingly,

the angle GEF is the angle required. In shells

which bear longitudinal striae or other ornaments,

any pair of these will suffice for our purpose,

instead of thfe actual boundaries of the whorl.

But it is obvious that this method will be apt to

fail us when the angle a is very small; and

when, consequently, the points E and F are very

remote.

(3) In shells (or horns) shewing rings or other transverse

ornamentation, we may take it that these ornaments are set at

Fig. 381.

Fig. 382. An Ammonite, to

shew corrugated surface-

pattern.

* Clerk Maxwell, On the theory of rolling curves. Trans. B.S.E. xvi, pp. 519-

540, 1849; Sci. Papers, i, pp. 4-29.
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a constant angle to the spire, and therefore to the radii. The angle

(6) between two of them, as AC, BD, is therefore equal to the

angle 9 between the polar radii from A and B, or from C and D;

and therefore BD/AC = e^cota^ which gives us the angle a in terms

of known quantities.

(4) If only the outer edge be available, we have the ordinary-

geometrical problem—given an arc of an equiangular spiral, to find

its pole and spiral angle. The methods we may employ depend

(i) on determining directly the position of the pole, and (ii) on

determining the radius of curvature.

The first method is theoretically simple, but difficult in practice;

for it requires great accuracy in determining th'fe points. Let AD,

DB be two tangents drawn to the

curve. Then a circle drawn through

the points A, B, D will pass through

the pole 0, since the angles OAT>,

QBE (the supplement of OBD) are

equal. The point may be deter-

mined by the intersection of two

such circles; and the angle DBO is

then the angle, a, required.

Or we may determine graphically, ' p- ^^
at two points, the radii of curvature

P1P2. Then, if s be the length of the arc between them (which may
be determined with fair accuracy by rolling the margin of the shell

along a ruler),
cot a = (pi — P2)is.

The following method*, given by Blake, will save actual determination of

the radii of curvature.

Measure along a tangent to the curve the distance, AC, at which a certain

small offset, CD, is made by the curve; and from another point B, measure

the distance at which the curve makes an equal offset. Then, calling the

offset jLt; the arc AB, s; and AC, BE, respectively x^, x^, we have

a; 2^_ 2

Pj_
= ^

, approximately,
/^

and cota =
2ixs

Of all these methods by which the mathematical constants, or

specific characters, of a given spiral shell ipay be determined, the

* For an example of this method, see Blake, loc. cit. p. 251.
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only one of which much use has been made is that which Moseley

first employed, namely, the simple method of determining the

relative breadths of the whorl at distances separated by some
convenient vectorial angle such as 90° , 180° , or 360° .

Very elaborate measurements of a number of Ammonites have

been made by Naumann*, by Grabau, by Sandberger f, and by
Miiller, among which we may choose a couple of cases for considera-

tion f. In the following table I have taken a portion of Grabau's

Ammonites intuslabiatus

Ratio of breadth of
Ith of whorls
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determinations of the breadth of the whorls in Ammonites (Arcestes)

intuslabiatus; these measurements Grabau gives for every 45° of

arc, but I have only set forth successive whorls measured along

one diameter on both sides of the pole. The ratio between alternate

measurements is therefore the same ratio as Moseley adopted,

namely the ratio of breadth between contiguous whorls along a

radius vector. I have then added to these observed values the

corresponding calculated values of the angle a, as obtained from

our usual formula.

There is considerable irregularity in the ratios derived from these

measurements, but it will be seen that this irregularity only implies

a variation of the angle of the spiral between about 85° and 87° ;

and the values fluctuate pretty regularly about the mean, which

is 86° 15'. Considering the difficulty of measuring the whorls,

especially towards the centre, and in particular the difficulty of

determining with precise accuracy the position of the pole, it is

clear that in such a case as this we are not justified in asserting that

the law of the equiangular spiral is departed from.

Ammonites tornatus
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that of a cone with shghtly curving sides : in which, that is to say,

there is a sHght acceleration of growth in a transverse as compared

with the longitudinal direction.

In a tubular spiral, whether plane or hehcoid, the consecutive

whorls may either be (1) isolated and remote from one another;

or (2) they may precisely meet, so that the outer border of one

and the inner border of the next just coincide; or (3) they may
overlap, the vector plane of each outer whorl cutting that of its

immediate predecessor or predecessors.

Looking, as we have done, upon the spiral shell as being essentially

a cone roUed up*, it is plain that, for a given spiral angle, intersection

or non-intersection of the successive whorls will depend upon the

apical angle of the original cone. For the wider the cone, the more

will its inner border tend to encroach on the preceding whorl. But

it is also plain that the greater the apical angle of the cone, and the

broader, consequently, the cone itself, the greater difference will

there be between the total lengths of its inner and outer borders.

And, since the inner and outer borders are describing precisely

the same spiral about the pole, we may consider the inner border

as being retarded in growth as compared with the outer, and as

being always identical with a smaller and earUer part of the latter.

If A be the ratio of growth between the outer and the inner curve,

then, the outer curve being represented by

r = ae^ootcc^

the equation to the inner one will >^e

/ = aAe^cota^

or r' = ae^^-y^^^^"",

* To speak of a cone "rolling up," and becoming a nautiloid spiral by doing so,

is a rough and non-mathematical description; nor is it easy to see how a cone of

wide angle could roll up, and yet remain a cone. But if (i) the centre of a sphere

move along a straight line and its radius keep proportional to the distance the

centre has moved, the sphere generates as its envelope a circular cone of which

the straight line is the axis; and so, similarly, if (ii) the centre of a sphere move
along an equiangular spiral and its radius keep proportional to the arc-distance

along the spiral back to the pole, the sphere generates as its envelope a self-similar

shell-surface, or nautiloid spiral.
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and y may then be called the angle of retardation, to which the

inner curve is subject by virtue of its slower rate of growth.

Dispensing with mathematical formulae, the several conditions

may be illustrated as follows

:

In the diagrams (Fig. 385), OF-^F^F^, etc. represents a radius,

on which P^, F^, Pg are the points attained by the outer border

of the tubular shell after as many entire consecutive revolutions.

And Pi', P2', P3' are the points similarly intersected by the inner

border ; OFjOF' being always = A, which is the ratio of growth,

or
'

' cutting-down factor.
'

' Then, obviously, ( 1 ) when OP^ is less than

Fig. 385.

OP2' the whorls will be separated by an interspace (a); (2) when
OF^ = OP2' they will be in contact (6), and (3) when OF^ is greater

than OF^ there will be a greater or less extent of overlapping,

that is to say of concealment of the surfaces of the earher by the

later whorls (c). And as a further case (4), it is plain that if A be

very large, that is to say if OF-^ be greater, not only than OF^
but also than OP3', OP4', etc., we shall have complete, or all but

complete, concealment by the last formed whorl of the whole of

its predecessors. This latter condition is completely attained in

Nautilus pompilius, and approached, though not quite attained, in

N. umbilicatus] and the difference between these two forms, or

"species," is constituted accordingly by a difference in the value

of A. (5) There is also a final case, not easily distinguishable
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externally from (4), where P' lies on the opposite side of the radius

vector to P, and is therefore imaginary. This final condition is

exhibited in Argonauta.

The Hmiting values of A are easily

ascertained.

In Fig. 386 we have portions of

two successive whorls, whose corre-

sponding points on the same radius

vector (as R and R) are, therefore,

^^*
' at a distance apart corresponding to

277-. Let r and r' refer to the inner, and R, R' to the outer sides of

the two whorls. Then, if we consider

it follows that R' = ae<^+2;r) cot a^

and r' = Aae^^+^^^^^o*^ = j^g(^f27r-7)cota_

Now in the three cases (a, b, c) represented in Fig. 385, it is

plain that r' = R, respectively. That is to say,

Xae^0+2n)COta j ae^cota^

and Ae^^^ota | i^

The case in which Ae^'^^^*'^ = 1, or — log A = 277- cot a log e, is

the case represented in Fig. 385, b: that is to say, the particular

case, for each value of a, where the consecutive whorls just touch,

without interspace or overlap. For such cases, then, we may
tabulate the values of A as follows:

Cdiistaiit angle a
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consecutive whorls if the rate of growth of the inner border of the
tube be a small fraction—a tenth or a twentieth—of that of the
outer border. In spirals whose con-

stant angle is 80° , contact is attained

when the respective rates of growth
are, approximately, as 3 to 1; while

in spirals of constant angle from about
85° to 89° ,contact is attained when the

rates of growth are in the ratio of from

about f to j%.

If on the other hand we have, for

any given value of a, a value of A

greater or less than the value given

in the above table, then we have,

respectively, the conditions of separa-

tion or of overlap which are exempUfied

in Fig. 385, a and c. And, just as we
have constructed this table for the

particular case of simple contact, so we could construct similar tables

for various degrees of separation or of overlap.

For instance, a case which admits of simple solution is that in

which the interspace between the whorls is everywhere a mean pro-

portional between the breadths of the whorls themselves (Fig. 387).

In this case, let us call OA = R, OC = R^, and OB = r. We then

have

Fig. 387.

i^2=OC = ae(^+2'^>^^*^

And r2= (1/A)2 .
¤2^«0t«,

whence, equating. 1/A = eTTCota

* It has been pointed out to me that it does not follow at once and obviously

that, because the interspace AB i& & mean proportional between the breadths of

the adjacent whorls, therefore the whole distance OB is a mean proportional

between OA and OC. This is a corollary which requires to be proved; but the

proof is easy..
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The corresponding values of A are as follows

:

Ratio (\) of rates of growth of outer and inner
border, such as to produce a spiral with interspaces

between the wliorls, the breadth of which
intei-spaces is a mean proportional between the

Constant angle (a) breadths of the whorls themselves

90° 1-00 (imaginary)
89 0-95

88 0-89

87 0-85

86 0-81

85 0-76

80 0-57

75 0-43

70 0-32

65 0-23

60 018
55 013
50 0090
45 0-063
40 0042
35 0026
30 0016 .

As regards the angle of retardation, y, in the formula

/ = Ae^^o*«, or / = e(^-^)cota^

and in the case

r' = e(2^-y)cota^ ^j. _ log A - (277 - y) cot a,

it is evident that when y = 27t, that will mean that A = 1. In

other words, the outer and inner borders of the tube are identical,

and the tube is constituted by one continuous hne.

When A is a very small fraction, that is to say when the rates

of growth of the two borders of the tube are very diverse, then

y wfll tend towards infinity—tend that is to say towards a condition

in which the inner border of the tube never grows at all. This

condition is not infrequently approached in nature. I take it that

Cyfraea is such a case. But the nearly parallel-sided cone of

Dentalium, or the widely separated whorls of Lituites, are cases

where A nearly approaches unity in the one case, and is still large

in the other, y being correspondingly small ; while we can easily find

cases where y is very large, and A is a small fraction, for instance

in Haliotis, in Calyptraea, or in Gryphaea.

For the purposes of the morphologist, thoji, the main result of

this last general investigation is to shew that all the various types

of ''open" and "closed" spirals, all the various degrees of separation
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or overlap of the successive whorls, are simply the outward ex-

pression of a varying ratio in the rate of growth of the outer as

compared with the inner border of the "tubular shell.

The foregoing problem of contact, or intersection, of successive

whorls is a very simple one in the case of the discoid shell but

a more complex one in the turbinate. For in the discoid shell

contact will evidently take place when the retardation of the inner

as compared with the outer whorl is just 360° , and the shape of

the whorls need not be considered.

As the angle of retardation diminishes from 360° , the whorls stand

further and further apart' in an open coil; as it increases beyond 360° ,

they overlap more and more ; and when the angle of retardation is

infinite, that is to say when the true inner edge of the whorl does

not grow at all, then the shell is said to be completely involute. Of
this latter condition we have a striking example in Argonauta, and

one a Httle more obscure in Nautilus pompilius.

In the turbinate shell the problem of contact is twofold, for v.\,

have to deal with the possibihties of contact on the same side of

the axis (which is what we have dealt with in the discoid) and also

with the new possibiHty of contact or mtersection on the opposite

side; it is this latter case which will .determine the presence or

absence of an open umbilicus. It is further obvious that, in the

case of the turbinate, the question of contact or no contact will

depend on the shape of the generating curve ; and if we take the

simple case where this generating curve may be considered as an

eUipse, then contact will be found to depend on the angle which

the major axis of this elhpse makes with the axis of the shell. The
question becomes a compHcated one, and the student will find it

treated in Blake's paper already referred to.

When one whorl overlaps another, so that the generating curve

cuts its predecessor (at a distance of 27r) on the same radius vector,

the locus of intersection will follow^ a spiral fine upon the shell,

whjch is called the "suture" by conchologists. It is one of that

ensemble of spiral lines in space of which, as we have seen, the

whole shell may be conceived to be constituted ; and we might call

it a "contact-spiral," or "spiral of intersection." In discoid shells,

such as an Ammonite or a Planorbis, or in Nautilus umbilicatus,

there are obviously two such contact-spirals, one on each side of
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the shell, that is to say one on each side of a plane perpendicular

to the axis. In turbinate shells such a condition is also possible,

but is somewhat rare. We have it for instance in Solarium per-

spectivum, where the one contact-spiral is visible on the exterior of

Fig. 388. Solarium perspectivum.

the shell, and the other lies internally, winding round the open

cone of the umbihcus*; but this second contact-spiral is usually

imaginary, or concealed within the whorls of the turbinated shell.

Fig. 389. Haliotis tuberculata L. ; the ormer,

or ear shell.

Fig. 390. Scalaria

pretiosa L. ; the

wentletrap. From
Cooke's Spirals.

Again, in Haliotis, one of the contact-spirals is non-existent, because

of the extreme obUquity of the plane of the generating curve. In

* A beautiful construction: stupendum Naturae artijicium, Linnaeus.
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Scalaria pretiosa and in Spirula* there is no contact-spiral, because

the growth of the generating curve has been too slow in comparison

with the vector rotation of its plane. In Argonauta and in Cypraea

there is no contact-spiral, because the growth of the generating

curve has been too quick. Nor, of course, is there any contact-

spiral in Patella or in Dentalium, because the angle a is too small

Fig. 392. Turhinella napus

Lam.; an Indian chank-

shell. From Chenu.

Fig. 391. Thatcheria mirabilis Angas;
from a radiograph by Dr A. Miiller.

ever to give us a complete revolution of the spire. Thatcheria

mirabilis is a peculiar and beautiful shell, in which the outhne of

the Up is sharply triangular, instead of being a smooth curve : with

the result that the apex of the triangle forms a conspicuous "gene-

rating spiral", which winds round the shell and is more conspicuous

than the suture itself.

In the great majority of hehcoid or turbinate shells the innermost

* "It [Spirula] is curved so as its roundness is kept, and the Parts do not touch

one another": R. Hooke, Posthumoics Works, 1745, p. 284.
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or axial portions of the whorls tend to form a soHd axis or

"columella"; and to this is attached the columellar muscle which
on the one hand withdraws the animal within its shell, and on the

other hand provides the controlhng force or trammel, by which (in

the gastropod) the growing shell is kept in its spiral course. This

muscle is apt to leave a winding groove upon the columella (Fig. 373)

;

now and then the muscle is spht into strands or bundles, and then

it leaves parallel grooves with ridges or pleats between, and the

number of these folds or pleats may vary with the species, as in the

Volutes, or even with race or locahty. Thus, among the curiosities

of conchology, the chank-shells on the Trincomah coast have four

columellar folds or ridges; but all those from Tranquebar, just north

of Adam's Bridge, have only three (Fig. 392)*.

The various forms of straight or spiral shells among the Cephalo-

pods, which we have seen to be capable of complete definition by
the help of elementary mathematics, have received a very com-

phcated descriptive nomenclature from the palaeontologists. For

instance, the straight cones are spoken of as orthoceracones or

bactriticories, the loosely coiled forms as gyroceracones or mimo-
ceracones, the more closely coiled shells, in which one whorl overlaps

the other, as nautilicones or ammoniticones, and so forth. In such

a series of forms the palaeontologist sees undoubted and unquestioned

evidence of ancestral descent. For instance We read in Zittel's

Palaeontologyf :
" The bactriticone obviously represents the primitive

or primary radical of the Ammonoidea, and the mimoceracone the

next or secondary radical of this order "
; while precisely the opposite

conclusion was drawn by Owen, who supposed that the straight

chambered shells of such fossil Cephalopods as Orthoceras had been

produced by the gradual unwinding of a coiled nautiloid shell {.

The mathematical study of the forms of shells lends no support to these

* Cf. R. Winckworth, Proc. Malacol Soc. xxiii, p. 345, 1939.

t English edition, 1900, p. 537. The chapter is revised by Professor Alpheus
Hyatt, to whom the nomenclature is largely due. For a more copious terminology,

see Hyatt, Phytogeny of an Acquired Characteristic, 1894, p. 422 seq. Cf. also

L. F. Spath, The evolution of the Cephalopoda, Biol. Reviews, viii, pp. 418-462,

1933 .

X Th is latter conclusion is adopted by Willey, Zoological Results, 1902, p. 747.

Cf. also Graham Kerr, on Spirula: Dana Reports, No. 8, Copenhagen, 1931.
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or any stichlihe phylogenetic hypotheses*. If we have two shells

in which the constant angle of the spire be respectively 80° and
60° , that fact in itself does not at all justify an assertion that the

one is more- primitive, more ancient, or more "ancestral" than the

other. Nor, if we find a third in which the angle happens to be

70° , does that fact entitle us to say that this shell is intermediate

between the other two, in time, or in blood relationship, or in

any other sense whatsoever save only the strictly formal and

mathematical one. For it is evident that, though these particular

arithmetical constants manifest themselves in visible and recog-

nisable differences of form, yet they are not necessarily more

deep-seated or significant than are those which manifest themselves

only in difference of magnitude; and the student of phylogeny

scarcely ventures to draw conclusions as to the relative antiquity

of two allied organisms on the ground that one happens to be

bigger or less, or longer or shorter, than the other.

At the same time, while.it is obviously unsafe to rest conclusions

upon such features as these, unless they be strongly supported

and corroborated in other ways—for the simple reason that there

is unlimited room for coincidence, or separate and independent

attainment of this or that magnitude or numerical ratio—yet on

the other hand it is certain that, in particular cases, the evolution

of a race has actually involved gradual increase or decrease in

some one or more numerical factors, magnitude itself included

—

that is to say increase or decrease in some one or more of the

actual and relative velocities of growth. When we do meet with

a clear and unmistakable series of such progressive magnitudes or

ratios, manifesting themselves in a progressive series of ''aUied"

forms, then we have the phenomenon of "orthogenesis."' For

orthogenesis is simply that phenomenon of continuous Unes or

series of form (and also of functional or physiological capacity),

* Phylogenetic speculation, fifty years ago the chief preoccupation of the

biologist, has had its caustic critics. Cf. {int. al.) Rhumbler, in Arch. f. Entw.

Mech. VII, p. 104, 1898: " Phylogenetische Speculationen . . , werden immer auf

Anklang bei den Fachgenossen rechnen dlirfen, sofern nicht ein anderer Fachgenosse

auf demselben Gebiet rait gleicher Kenntniss der Dinge und mit gleicher Scharfainn

zufallig zu einer anderen Theorie gekommen ist. . . .Die Richtigkeit 'guter' phylo-

genetischer Schliisse lasst sich im schlimmsten Falle anzweifeln, aber direkt

widerlegen lasst sich in der Regel«iicht."
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which was the foundation of the Theory of Evolution, aUke to

Lamarck and to Darwin and Wallace; and which we see to exist

whatever be our ideas of the "origin of species," or of the nature

and origin of "functional adaptations." And to my mind, the

mathematical (as distinguished from the purely physical) study of

morphology bids fair to help us to recognise this phenomenon of

orthogenesis in many cases where it is not at once patent to the

eye; and, on the other hand, to warn us in many other cases that

even strong and apparently complex resemblances in form may be

capable of arising independently, and may sometimes signify no

more than the equally accidental numerical coincidences which are

manifested in identity of length or weight or any other simple

magnitudes.

I have already referred to the fact that, while in general a very

great and remarkable regularity of form is characteristic of the

molluscan shell, yet that complete regularity is apt to be departed

from. We have clear cases of such a departure in Pujpa, Clausilia

and various Bulimi, where the spire is not conical, but its -sides are

curved and narrow in.

The following measurements of three specimens of Clausilia shew

a gradual change in the ratio to one another of successive whorls, or

in other words a marked departure from the logarithmic law:

Clausilia lamellosa. (From Chr. Petersen*.)
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changes in the spiral angle may be detected even in ammonites which

present nothing abnormal to the eye. But let us suppose that the

spiral angle increases somewhat rapidly; we shall then get a spiral

with gradually narrowing whorls, which condition is characteristic of

Oekotraustes, a subgenus of Ammonites. If on the other hand, the

angle a gradually diminishes, and even falls away to zero, we shall

have the spiral curve opening out, as it does in Scaphites, Ancyloceras

Fig. 393. An ammonitoid shell (Macroscaphites) to shew change of

curvature.

and Lituites, until the spiral coil is replaced by a spiral curye so

gentle as to seem all but straight. Lastly, there are a few cases,

such as BelleropJion expansus and some Goniatites, where the outer

spiral does not perceptibly change, but the whorls become more

"embracing" or the whole shell more involute. Here it is the

angle of retardation, the ratio of growth between the outer and

inner parts of the whorl, which undergoes a gradual change.

In order to understand the relation of a close-coiled shell to its

straighter congeners, to compare (for example) an Ammonite with

an Orthoceras, it is necessary to estimate the length of the right

cone which has, so to speak, been coiled up into the spiral shell. Our
problem is, to find the length of a plane equiangular spiral, in

terms of the radius and the constant angle a. Then, if OP be a

radius vector, OQ a line of reference perpendicular to OP, and

PQ a tangent to the curve, PQ, or sec a, is equal in length to the

spiral arc OP. In other words, the arc measured from the pole is

equal to the polar tangent*. And this is practically obvious: for

* Descartes made this discovery, and records it in a letter to Mersenne, 1638.

The equiangular spiral was thus the first transcendental curve to be "rectified."
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PP'/PR' = dsjdr = sec a, and therefore sec a = sjr, or the ratio of

arc to radius vector.

Fig. 394.

Accordingly, the ratio of I, the total length, to r, the radius

vector up to which the total length is to be measured, is expressed

by a simple table of secants ; as follows

:

a
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Accordingly, we see that (1), when the constant angle of the

spiral is small, the shell (or for that matter the tooth, or horn or

claw) is scarcely to be distinguished from a straight cone or cylinder;

and this remains pretty much the case for a considerable increase of

angle, say from 0° to 20° or more; (2) for a considerably greater

increase of the constant angle, say to 50° or rnore, the shell would

still only have the appearance of a gentle curve; (3) the charac-

teristic close coils of the Nautilus or Ammonite would be typically

represented only when the constant angle lies within a few degrees

on either side of about 80° . The coiled up spiral of a Nautilus,

with a constant angle of about 80° , is about six times the length

of its radius vector, or rather more than three times its own
diameter ; while that of an Ammonite, with a constant angle of, say,

from 85° to 88° , is from about six to fifteen times as long as its own
diameter. And (4) as we approach an angle of 90° (at which point

the spiral vanishes in a circle), the length of the coil increases with

enormous rapidity. Our spiral would soon assume the appearance

of the close coils of a Nummuhte, and the successive increments

of breadth in the successive whorls would become inappreciable to

the eye.

The geometrical form of the shell involves many other beautiful

properties, of great interest to the mathematician but which it is

not possible to reduce to such simple expressions as we have been

content to use. For instance, we may obtain an equation which

shall express completely the surface of any shell, in terms of polar

or of rectangular coordinates (as has been done by Moseley and

by Blake), or in Hamiltonian vector notation*. It is likewise pos-

sible (though of little interest to the naturalist) to determine the

area of a conchoidal surface or the volume of a conchoidal solid,

and to find the centre of gravity of either surface or solid f. And
Blake has further shewn, with considerable elaboration, how we may
deal with the symmetrical distortion due to pressure which fossil

shells are often found to have undergone, and how we may re-

constitute by calculation their original undistorted form—a problem

which, were the available methods only a Kttle easier, would be

* Cf. H. W. L. Hime's Outlines of Quaternions, 1894, pp. 171-173.

t See Moseley, op. cit. p. 361 seq. Also, for more complete and elaborate treat-

ment, Haton de la Goupilliere, op. cit. 1908, pp. 5-46, 69-204.
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very helpful to the palaeontologist; for, as Blake himself has shewn,

it is easy to mistake a symmetrically distorted specimen of (for

instance) an Ammonite for a new and distinct species of the same
genus. But it is evident that to deal fully with the mathematical

problems contained in, or suggested by, the spiral shell, would require

a whole treatise, rather than a single chapter of this elementary book.

Let us then, leaving mathematics aside, attempt to summarise, and
perhaps to extend, what has been said about the general possibilities

of form in this class of organisms.

The univalve shell: a summary

The surface of any shell, whether discoid or turbinate, may be

imagined to be generated by the revolution about a fixed axis of

a closed curve, which, remaining always geometrically similar to

itself, increases its dimensions continually: and, since the scale of

the figure increases in geometrical progression while the angle

of rotation increases in arithmetical, and the centre of similitude

remains fixed, the curve traced in space by corresponding points

in the generating curve is, in all such cases, an equiangular spiral. In

discoid shells, the generating figure revolves in a plane perpendicular

to the axis, as in the Nautilus, the Argonaut and the Ammonite. In

turbinate shells, it follows a skew path with respect to the axis of

revolution, and the curve in space generated by any given point makes
a constant angle to the axis of the enveloping cone, and partakes,

therefore, of the character of a helix, as well as of a logarithmic spiral.;

it may be strictly entitled a helico-spiral. Such turbinate or helico-

spiral shells include the snail, the periwinkle and all the common
typical Gastropods.

When the envelope of the shell is a right cone—and it is seldom far from
being so—then our helico-spiral is a loxodromic curve, and is obviously

identical with a projection, parallel with the axis, of the logarithmic spiral

of the base. As this spiral cuts all radii at a constant angle, so its orthogonal

projection on the surface intersects all generatrices, and consequently all

parallel circles, under a constant angle* this being the definition of a loxodromic
curve on a surface of revolution. Guido Grandi describes this curve for the

first time in a letter to Ceva, printed at the end of his Demonstratio theorematum

Hugenianorum circa. . .logarithmicam lineam, 1701 *.

* See R. C. Archibald, op. cit. 1918. Ohvier discussed it again {Rev. de geom.

descriptive, 1843) calling it a "conical equiangular" or "conical logarithmic"
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The generating figure may be taken as any section of' the shell,

whether parallel, normal, or otherwise incHned to the axis. It is very

commonly assumed to be identical with the mouth of the shell; in

which case it is sometimes a plane curve of simple form ; in other and

more numerous cases, it becomes compHcated in form and its boun-

daries do not he in one plane: but in such cases as these we may
replace it by its "trace," on a plane at some

definite angle to the direction of growth, for

instance by its form as it appears in a section

through the axis of the helicoid shell. The
generating curve is of very various shapes.

It is circular in Scalaria or Cyclostoma, and

in Spirula ; it may be considered as a segment

of a circle in Natica or in Planorbis. It is

triangular in Conus or Thatcheria, and

rhomboidal in Solarium or Potamides. It

is very commonly more or less elliptical : the

long axis of the ellipse being parallel to the

axis of the shell in Oliva and Cypraea; all

but perpendicular to it in many Trochi ; and

oblique to it in many well-marked cases,^such

as Stomatella, Lamellaria, Sigaretus halio-

toides (Fig. 396) and Haliotis. In Nautilus

pomjpilius it is approximately a semi-ellipse, Fig. 395. Section of a spiral

and in A^. umbilicatus rather more than a ^^^^^^> Triton corrugatus

Lam. jrom Woodward.
semi-ellipse, the lo'ng axis lying in both cases

perpendicular to the axis of the shell*. Its form is seldom open to

easy mathematical expression, save when it is an actual circle or

spiral. Paul Serret (Th. nouv. . .des lignes a double courbure, 1860, p. 101) called

it ""helice cylindroconique'" ; Haton de la Goupilliere calls it a '' conhelice.'" It has
also been studied by {int. at.) Tissot, Nouv. ann. de mathem. 1852; G. Pirondini,

Mathesis, xix, pp. 153-8, 1899; etc.

* In Nautilus, the "hood" has somewhat dififerent dimensions in the two
sexes, and these differences are impressed upon the shell, that is to say upon its

"generating curve." The latter constitutes a somewhat broader ellipse in the

male than in the female. But this difference is not to be detected in the young;
in other words, the form of the generating cu'rve perceptibly alters with advancing
age. Somewhat similar differences in the shells of Ammonites were long ago
suspected, by d'Orbigny, to be due to sexual differences. (Cf. Willey, Natural

Science, vi, p. 411, 1895; Zoological Results, 1902, p. 742.)
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ellipse; but an exception to this rule may be found in certain

Ammonites, forming the group " Cordati," where (as Blake points out)

the curve is very nearly represented by a cardioid, whose equation

is r = a (1 + cos 6).

When the generating curves of successive whorls cut one another,

the hne of intersection forms the conspicuous heHco-spiral or

loxodromic curve called the suture by conchologists.

The generating curve may grow slowly or quickly; its growth-

factor is very slow in Dentalium or Turritella, very rapid in Nerita,

or Pileopsis, or Haliotis or the Limpet. It may contain the axis

in its plane, as in Nautilus ; it may be parallel to the axis, as in the

majority of Gastropods; or it may be inclined to the axis, as it is in

a very marked degree in Haliotis, In fact, in Haliotis the generating

BA
Fig. 396. A, Lanydlaria perspicua; B, Sigaretus haliotoides.

After Woodward.

curve is so oblique to the axis of the shell that the latter appears

to grow by additions to one margin only (cf. Fig. 362), as in the

case of the opercula of Turbo and Nerita referred to on p. 775;

and this is what Moseley supposed it to do.

The general appearance of the entire shell is determined (apart

from the form of its generating curve) by the magnitude of three

angles; and these in turn are determined, as has been sufficiently

explained, by the ratios of certain velocities of growth. These

angles are (1) the constant angle of the equiangular spiral (a); (2) in

turbinate shells, the enveloping angle of the cone, or (taking half

that angle) the angle (p) which a tangent to the whorls makes with

the axis of the shell; and (3) an angle called the "angle of retarda-

tion" (y), which expresses the retardation in growth of the inner

as compared with the outer part of each whorl, and therefore

measures the extent to which one whorl overlaps, or the extent to

which it is separated from, another.
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The spiral angle (a) is very small in a limpet, where it is usually-

taken as =0° ; but it is evidently of a significant amount,

though obscured by the shortness of the tubular shell. In

Dentalium it is still small, but sufficient to give the appearance

of a regular curve; it amounts here probably to about 30° to

40° . In Haliotis it is from about 70° to 75° ; in Nautilus about

80° ; and it lies between 80° and 85° or even more, in the majority

of Gastropods*.

The case of Fissurella is curious. Here we have, apparently,

a conical shell with no trace of spiral curvature, or (in other words)

with a spiral angle which approximates to 0° ; but in the minute

embryonic shell (as in that of the limpet) a spiral convolution is

distinctly to be seen. It would seem, then, that what we have ^to

do with here is an unusually large growth-factor in the generating

curve, causing the shell to dilate into a cone of very wide angle,

the apical portion of which has become lost or absorbed, and the

remaining part of which is too short to show clearly its intrinsic

curvature. In the closely allied Emarginula, there is hkewise a

well-marked spiral in the embryo, which however is still manifested

in the curvature of the adult, nearly conical, shell. In both cases

we have to do with a very wide-angled cone, and with a high

retardation-factor for its inner, or posterior, border. The series is

continued, from the apparently simple cone to the complete spiral,

through such forms as Calyptraea.

The angle a, as we have seen, is not always, nor rigorously,

a constant angle. In some Ammonites it may increase with age,

the whorls becoming closer and closer; in others it may decrease

rapidly and even fall to zero, the coiled shell then straightening

out, as in Lituites and similar forms. It diminishes somewhat, also,

in many Orthocerata, which are slightly curved in youth but straight

in age. It tends to increase notably in some common land-shells,

the Pupae and Bulimi ; and it decreases in Succinea.

Directly related to the angle a is the ratio which subsists between

the breadths of successive whorls. The following table gives a few

* What is sometimes called, as by Leslie, the angle of deflection is the complement
of what we have called the spiral angle (a), or obliquity of the spiral. When the

angle of deflection is 6° 17' 41", or the spiral angle 83'' 42' 19", the radiants, or

breadths of successive whorls, are doubled at each entire circuit.
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illustrations of this ratio in particular cases, in addition to those

which we have already studied.

Ratio of breadth of consecutive whorls

Pointed Turbinates

Telescopium fuscum ... 1-14

Terebra suhulata ... ... 1-16

*Turritella terebellata ... 1-18

*Turritella imbricata... ... 1-20

Cerithium palustre ... ... 1 "22

Turritella duplicata ... ... 1-23

Melanopsis terebralis ... 1-23

Cerithium nodulosum ... 1-24

* Turritella carinata ... ... 1-25

Terebra crenulata ... ... 1-25

Terebra maculata (Fig. 397) 1-25

*Cerithium lignitarum ' ... 1-26

Terebra dimidiata 1-28

Cerithium sulcatum ... ... 1-32

Fusus longissimus ... ... 1*34

*Pleurotomaria conoidea ... 1-34

Trochus niloticus (Fig. 398) 1-41

Mitra episcopalis ... ... 1-43

Fusus antiquus ... ... 1 -50

Scalaria pretiosa ... ... 1-56

Fusus colosseus ... ... 1-71

PhasiaTvella australis ... 1-80

Helicostyla polychroa ... 2-00

Obtuse Turbinates and Discoids

Conus virgo ... ... ... 1-25

XClymenia laevigata ... ... 1-33

Conus litteratus ... ... 1*40

Conus betulinus ... ... 1-43

XClymenia arietina ... ... 1-50

%Goniatites bifer ... ... 1-50

*Helix nemoralis ... ... 1-50

*Solarium perspectivum ... 1*50

Solarium trochleare ... 1-62

Solarium magnificum ... 1-75

*Natica aperta ... ... 2-00

Euomphalus pentangulatus 2-00

Planorbis corneus ... ... 2-00

Solaropsis pellis-serpentis ... 2-00

Dolium zondtum ... ... 2-10

XGoniatites carinatus ... 2-50

*Natica glaucina ... ... 3-00

Nautilus pompilius ... 3-00

Haliotis excavatus ... ... 4-20

Hal^otis parvus ... ... 6*00

Delphinula atrata ... ... 6-00

Haliotis rugoso-plicata ... 9-30

Haliotis viridis ... ... 10-00

Those marked * from Naumann; J from Miiller; the rest from Macalisterf.

In the case of turbinate shells, we muSt take into account the

angle y^, in order to determine the spiral angle a from the ratio

of the breadths of consecutive whorls; for the short table given

on p. 791 is only applicable to discoid shells, in which the angle fi

is an angle of 90° . Our formula, as mentioned on p. 771, now
becomes

J^ _ ^27rsin/?cota

For this formula, I have worked out the following table.

f Alex. Macahster, Observations on the mode of growth of discoid and turbinated

shells, Proc. R.S. xviii, pp. 529-532, 1870; Ann. Mag. N.H. (6), iv, p 160, 1870.

Cf. also his Law of Symmetry as exemplified in animal form, Journ. B. Dublin Soc.

1869, p. 327.
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From this table, by interpolation, we may easily fill in the

approximate values of a, as soon as we have determined the apical

angle ^ and measured the ratio R\ as follows:

Turritella sp.
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save in the somewhat "produced" spire, that is to say in the com-

paratively low value of the angle p.

A variation with advancing age of ^ is common, but (as Blake

points out) it is often not to be distinguished or disentangled from

an alteration of a. Whether alone, or combined with a cKange in a,

we find it in all those many gastropods whose whorls cannot all be

touched by the same enveloping cone, and whose spire is accordingly

described as concave or convex. The former condition, as we have

Fig. 398. Trochus niloticus L.

it in Cerithium, and in the cusp-Hke spire of Cassis, Dolium and
some Cones, is much the commoner of the two*.

In the vast majority of spiral univalves the shell winds to the

right, or turns clockwise, as we look along it in the direction in which

the animal crawls and puts out its head. The thread of a carpenter's

screw (except in China) runs the same way, and we call it a "right-

handed screw." Save that it takes a right-handed movement to

* Many measurements of the linear dimensions of univalve shells have bgen
made of late years, and studied by statistical methods in order to detect local races

and other instances of variation and variability. But conchological statisticians

seem to be content with some arbitrary linear ratio as a measure of "squatness"
or the reverse; and the measurements chosen give Uttle or no help towards the

determination either of the apical or of the spiral angle. Cf, (e.g.) A. E. Boycott,

Conchometry, Proc. Malacol. Soc. xvn, p. 8, 1928; C. Price-Jones, ibid, xix,

p. 146, 1930; etc. See also G. Duncker, Methode der Variations-Statistik, Arch,

f. Entw. Mech. vm, pp. 112-183, 1899.
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drive in a "right-handed" screw, the terms right-handed and left-

handed are purely conventional; and the mathematicians and the

naturalists, unfortunately, use them in opposite ways. Thus the

mathematicians call the snail-shell or the joiner's screw kiotropic;

and Listing for one has much to say about lack of precision or even

confusion on the part of the conchologists and the botanists, from

Linnaeus downwards, in their attempts to deal with right-handed

and left-handed spirals or screws*. The convolvulus twines to the

right, the hop to the left; vine-tendrils are said to be mostly right-

handed. At any rate, Clerk Maxwell spoke of hop-spirals and vine-

^irals, trying to avoid the confusion or ambiguity of left and right.

Some climbing plants are one and some the other; and,the architect

shews httle preference, but builds his spiral staircases or twisted

columns either way. But in all these, shells and all, the spiral runs

one way; it is isotropic, while the fir-cone shews spirals running both

ways at once, and we call them heterotropic, or diadroinic.

When we find a "reversed shell," a whelk or a snail winding the

wrong way, we describe it mathematically by the simple statement

that the apical angle (^) has changed sign. Such left-handed shells

occur as a well-known but rare abnormality; and the men who

handle snails in the Paris market or whelks in Billingsgate keep

a sharp look-out for them. In rare instances they become common.

While left-handed whelks (Buccinum or Neptunea) are very rare

nowadays, it was otherwise in the epoch of the Red Crag; for

Neptunea was then extremely common, but right-handed specimens

were as rare as left-handed are today. In the beautiful genus

Ampullaria, or apple-snails, which inhabit tropical and sub-tropical

rivers, there is unusual diversity; for the spire turns to the right

in some species, and to the left in others, and again some are flat

or "discoid," with no spire at all; and there are plenty of half-way

stages, with right and left-handed spires of varying steepness or

acutenessf; in short, within the limits of this singular genus the

apical angle (y^) may vary from about ± 35° to ± 125° . But we

need not imagine that the direction of gK)wth actually changes

over from right-handed to left-handed; it is enough to suppose

* See Listing's Topologie, p. 36; and cf. Clerk Maxwell's Electricity and

Magnetism, i, p. 24.

t See figures in Arnold Lang's Comparative Anatomy (English translation),

II, p. ICl, 1902.
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that the ^ew movement along the axis has changed its direction.

For if I take a roll of tape and push the core out to one side or to

the other, or if I keep the centre of the roll fixed and push the rim

to the one side or to the other, I thereby convert the flat roll into a

hollow cone, or (in other words) a plane into a gauche spiral. Whether
we push one way or other, whether the spiral coil be plane or gauche,

positively or negatively deformed, it remains right-handed or left-

handed as the case may be ; but it does change its direction as soon

as we turn it upside down, or as soon as the animal does so in assuming

its natural attitude. The linear spirals within and without the cone

may change places but must remain congruent with one another;

for they are merely the two edges of the ribbon, and as such are

inseparable and identical twins. But of the shell itself we may
reasonably say that a^right-handed has given place to a left-handed

spiral. Of these, the one is a mirror-image of the other; and the

passing from one to the other through the plane of symmetry
(which has no "handedness*') is an operation which Listing called

perversion. The flat or discoid apple-snails are Uke our roll of tape,

which can be converted into a conical spire and perverted in one

direction or the other; and in this genus, by a rare exception, it

seems wellnigh as easy to depart one way as the other from the

plane of sjmametry. But why, in the general run of shells, all the

world over, in the past and in the present, one direction of twist is

so overwhelmingly commoner than the other, no man knows.

The phenomenon of reversal, or "sinistrality," has an interest of

its own from j:he side of development and heredity. For careful

study of certain pond-snails has shewn that dextral and sinistral

varieties appear, not one by one, but by whole broods of the one

sort or^the other; a discovery which goes some way to account

for the predominant left-handedness of Fusus amhiguus in the

Red Crag. The right-handed, or ordinary form, is found to be

"dominant" to the other; but the Mendelian heredity is of a curious

and complicated kind. For the direction of the twist appears to

be predetermined in the germ even prior to its fertilisation; and
a left-handed pond-snail will produce a brood of left-handed young
even when fertilised by a normal, or right-handed, individual*.

* See A, E. Boycott and others, Abnormal forms of Limnaea peregra . . .and their

inheritance, Phil. Trans. (B), ccxxix, p. 51, 1930; and other papers.
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The angle of retardation (y) is very small in . Dentalium and
Patella ; it is very large in Haliotis ; it becomes infinite in Argonauta

and in Cypraea. Connected with the angle of retardation are the

various possibilities of contact or separation, in various degrees,

between adjacent whorls in the discoid shell, and between both

adjacent and opposite whorls in the turbinate. But with these

phenomena we have already dealt sufficiently.

The beautiful shell of the paper-nautilus {Argonauta argo L.) differs

in sundry ways both from the Nautilus and from ordinary univalves.

Only the female Argonaut possesses it; it is not attached to its

owner, but is (so to speak) worn loose; it is rather a temporary

cradle for the young than a true shell or bodily covering; and it

is not secreted in the usual way, but is plastered on from the outside

by two of the eight arms of the Uttle Octopus to which it belongs.

The shell shews a single whorl, or but Httle more; and the spiral

is hard to measure, for this reason. It ha« been supposed by some
to obey a law other than the logarithmi-c spiral. For my part I have

made no special study of it, nor has any one else, to my knowledge,

of recent years; but the simple fact that it conserves its shape as it

grows, or that each increment is a gnomon to the rest, is enough to

shew that this dehcate and beautiful shell is mathematically, though

not morphologically, homologous with all the others.

Of bivalve shells

Hitherto we have dealt only with univalve shells, and it is in

these that all the mathematical problems connected .with the spiral,

or hehco-spiral, configuration are best illustrated. But the case of

the bivalve shell, whether of the lamelHbranch or the brachiopod,

presents no essential difference, save only that we have here to do

with two conjugate spirals, whose two axes have a definite relation

to one another, and some independent freedom of rotatory movement
relatively to one another.

The bivalve or lamelHbranch moUusca are very different creatures

from the rest. The univalves or gastropods, hke their cousins the

cephalopods, go about their business and get their living in an

ordinary way; but the bivalves are linintelHgent, "acephalous"

animals, and imbibe the invisible plankton-food which ciliary

currents bring automatically to their mouths. There is something
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to be said for withdrawing them, as brachiopods and others have

been withdrawn, from Cuvier's great class of the Mollusca. But

whether bivalves and univalves be near relations or no is not the

question. Both of them secrete a shell, and in both the shell

grows by the successive addition of similar parts, gnomon after

gnomon; so that in both the equiangular spiral makes, and is

bound to make, its appearance. There is a mathematical analogy

between the two; but it has no more bearing on zoological classi-

fication than has the still closer Hkeness between Nautilus and the

nautiloid Foraminifera.

The generating curve is particularly well seen in the bivalve,

where it simply constitutes what we call "the outline of the shell."

It is for the most part a plane curve, but not always ; for there are

forms such as Hippopus, Tridacna and many Cockles, or Rhynchonella

and Spirifer among the Brachiopods, in which the edges of the two

valves interlock, and others, such as Pholas, Mya, etc., where they

gape asunder. In such cases as these the generating curves, though

not plafie, are still conjugate, having a similar relation, but of

opposite sign, to a median plane of reference or of projection. There

are a few exceptional cases, e.g. Area (Parallelepipedon) tortuosa, where

there is no median plane of symmetry, but the generating curve,

and therefore the outline of the shell itself, is a tortuous curve in

three dimensions.

A great variety of form is exhibited among the bivalves by these

generating curves. In many cases the curve or outline is all but

circular, as in Anomia, Sphaerium, Artemis, Isocardia] it is nearly

semicircular in Argiope; it is approximately elliptical in Anodon,

Lutraria, Orthis; it may be called semi-elliptical in Spirifer; it is

a nearly rectilinear triangle in Lithocardium, and a curvilinear

triangle in Mactra. Many apparently diverse but more or less

related forms may be shewn to be deformations of a common type,

by a simple application of the mathematical theory of "trans-

formations," which we shall have to study in a later chapter. In

such a series as is furnished, for instance, by Gervillea, Perna,

Avicula, Modiola, Mytilus, etc., a "simple shear" accounts for most,

if not all, of the apparent differences.

Upon the surface of the bivalve shell we usually see with great

clearness the "lines of growth" which represent the successive
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margins of the shell, or in other words the successive positions

assumed during growth by the growing generating curve; and we

have a good illustration, accordingly, of how it is characteristic of

the generating curve that it should constantly increase, while never

altering its geometric similarity.

Underlying these lines of growth, which are so characteristic

of a moUuscan shell (and of not a few other organic formations),

there is, then, a law of growth which we may attempt to enquire

into and which may be illustrated in various ways. The simplest

cases are those in which we can study the lines of growth on a more

or less flattened shell, such as the one valve of an oyster, a Pecten

or a Tellina, or some such bivalve mollusc. Here around an origin,

the so-called "'umbo" of the shell, we have a series of curves, some-

times nearly circular, sometimes elliptical, often asymmetrical; and

such curves are obviously not "concentric," though we are often apt

to call them so, but have a common centre of similitude. This

arrangement may be illustrated by various analogies. We might

for instance compare it to a series of waves, radiating outwards

from a point, through a medium which offered a resistance increasing,

with the angle of divergence, according to some simple law. We
may find another and perhaps a simpler illustration as follows:

In a simple and beautiful theorem, Galileo shewed that, if we
imagine a number of inclined planes, or gutters, sloping downwards

(in a vertical plane) at various angles

from a common starting-point, and if

we imagine a number of balls rolling

each down its own gutter under the

influence of gravity (and without

hindrance from friction), then, at any

given instant, the locus of all these

moving bodies is a circle passing

through the point of origin. For the

acceleration along any one of the

sloping paths, for instance AB (Fig.

400), is such that

AB = ig cos d.t^

Therefore

^ig.AB/AC.t^.

t^=2lg.AC.
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That is to say, all the balls reach the circumference of the

circle at the same moment as the ball which drops vertically from

^ toC.
Where, then, as often happens, the generating curve of the shell

is approximately a circle passing through the point of origin, we
may consider the acceleration of growth along various radiants to

be governed by a simple mathematical law, closely akin to that

simple law of acceleration which governs the movements of a faUing

body. And, mutatis mutandis, a similar definite law underlies the

cases where the generating curve is continually elliptical, or where

it assumes some more complex, but still regular and constant

form.

It is easy to extend the proposition to the particular case where

the lines of growth may be considered elliptical. In such a case

we have x^/a^ + y^jb^ = 1, where a and b are the major and minor

axes of the ellipse.

Or, changing the origin to the vertex of the figure,

x^ 2aj 1/2 ^ . . (x— a)^ y^

Then, transferring to polar coordinates, where r . cos 6 = x,

r . sin 6 = y, we have

r . cos^ 6 2 cos 6 r . sin^

which is equivalent to

2a62 cos d
r =

b^cos^d + a^sin^d'

or, simpHfying, by eliminating the sine-function,

2ab^ cos d
r =

(62_a2)cos2<9 + a2*

Obviously, in the case when a = b, this gives us the circular

system which we have already considered. For other values, or

ratios, of a and 6, and for all values of 6, we can easily construct

a table, of which the following is a sample

:
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Chords of an ellipse, whose major and minor axes {a, b)

are in certain given ratios

0°

10
20
30
40
50
60
70
80
90

a/6 = 1/3

10
101
105
1115
1-21

1-34
1-50
1-59
1-235

00

1/2

10
101
103
1065
Ml
1145
1142
101^
0-635
0-0

2/3

10
1-002
1005
1-005
0-995
0-952
0-857
0-670
0-375
0-0

1/1

1-0

0-985
0-940
0-866
0-766
0-643
0-500
0-342
0-174
0-0

3/2

10
0-948
0-820
0-666
0-505
0-372
0-258
0-163
0-078
0-0

2/1

1-0

0-902
0-695
0-495
0-342
0-232
0-152
0-092
0-045
0-0

3/1

1-0

0-793
0-485
0-289
0-178
0-113
0-071
0-042
0-020
0-0

The ellipses whicli we then draw, from the values given in the

table, are such as are shewn in Fig. 401 for the ratio a/6 = f, and

in Fig. 402 for the ratio a/6 = J ; these are

fair approximations to the actual outlines, and

to the actual arrangement of the lines of growth,

in such forms as Solecurtus or Cultellus, and in

Tellina or Psammobia. It is not difficult to in-

troduce a constant into our equation to meet the

case of a shell which is somewhat unsymmetrical

on either side of the median axis. It is a some-

what more troublesome matter, however, to

bring these configurations into relation with a

"law of growth," as was so easily done in the

case of the circular figure: in other words, to
° °

formulate a law of acceleration according to which ^^^' ^^^ •

points starting from the origin 0, and moving along radial lines,

would all lie, at any future epoch, on an ellipse passing through ;

and this calculation we n^ed not enter into.

All that we are immediately concerned with is the simple fact

that where a velocity, such as our rate of growth, varies with its

direction—varies that is to say as a function of the angular divergfence

from a certain axis—then, in a certain simple case, we get lines of

growth laid down as a system of coaxial circles, and, in some-

what less simple cases, we obtain a system of ellipses or of

other more complicated coaxial figures, which may or may not

be symmetrical on either side of the axis. Among our bivalve

mollusca we shall find the Unes of growth to be approximately circular

in, for instance, Anomia] in Lima (e.g. L. subauriculata) we have
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a system of nearly symmetrical ellipses with the vertical axis about

twice the transverse; in Solen pellucidus, we have again a system

of lines of growth which are not far from being symmetrical eUipses,

Ct 10

Fig. 402.

in which however the transverse is between three and four times

as great as the vertical axis. In the great majority of cases, we
have a similar phenomenon with the further complication of slight,

but occasionally very considerable, lateral asymmetry.

In the above account of the mathematical form of the bivalve shell, we
have supposed, for simplicity's sake, that the pole or origin of the system is

at a point where all the successive curves touch one another. But such an
arrangement is neither theoretically probable, nor is it actually the case;

for it would mean that in a certain direction growth fell, not merely to a

minimum, but to zero. As a matter of fact, the centre of the system (the

"umbo" of the conchologists) lies not at the edge of the system, but very

near to it; in other words, there is a certain amount of growth all round.

But to take account of this condition would involve more troublesome mathe-

matics, and it is obvious that the foregoing illustrations are a sufficiently near

approximation to the actual case.

In certain little Crustacea (of the genus Estheria) the carapace

takes the form of a bivalve shell, closely simulating that of a

lamellibranchiate mollusc, and bearing lines of growth in all respects

analogous to or even identical with those of the latter. The explana-

tion is very curious and interesting. In ordinary Crustacea the

carapace, like the rest of the chitinised and calcified integument, is

shed off in successive moults, and is restored again as a whole.

But in Estheria (and one or two other small Crustacea) the moult is
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incomplete: the old carapace is retained, and the new, growing up
underneath it, adheres to it like a lining, and projects beyond its

edge: so that in course of time the margins of successive old

carapaces appear as "lines of growth" upon the surface of the shell.

In this mode of formation, then (but not in the usual one), we obtain

a structure which "is partly old and partly new," and whose suc-

cessive increments are all similar, similarly situated, and enlarged

Fig. 403. Hemicardium inver-

sum Lam, From Chenu.

Fig. 405. Section of Productus

'{Strophonema) sp. From
Woods.

Fig. 404. Caprinella adversa.

After Woodward.

in a continued progression. We have, in short, all the conditions

appropriate and necessary for the development of a logarithmic

spiral; and this logarithmic spiral (though it is one of small angle)

gives its own character to the structure, and causes the little carapace

to partake of the characteristic conformation of the molluscan shell.

Among the bivalves the spiral angle (a) is very small in the

flattened shells, such as Orthis, Lingula or Anomia. It is larger,

as a rule, in the LameUibranchs than in the Brachiopods, but in

the latter it is of considerable magnitude among the Pentameri.
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Among the Lamellibranclis it is largest in such forms as Isocardia

and Diceras, and in the very curious genus Caprinella; in all of

these last-named genera its magnitude leads to the production of

a spiral shell of several whorls, precisely as in the univalves. The

angle is usually equal, but of opposite sign, in the two valves of

the LamelHbranch, and usually of opposite sign but unequal in

the two valves of the Brachiopod. It is very unequal in many
Ostreidae, and especially in such forms as Gryphaea, or in Caprinella,

which is a kind of exaggerated Gryphaea; in the cretaceous genus

Requienia, the two valves of the shell closely resemble a turbinate

gastropod with its flat calcified operculum. Occasionally it is of the

same sign in both valves (that is to say, both valves curve the same

way) as we see sometimes in Anomia, and better in Productus or

Strophonema.

It will be observed, and it may not be difficult to explain, that

the more the bivalve shell curves in the one direction the more it

curves in the other; each valve tends,to be spheroidal, or ellipsoidal,

rather than cylindroidal. The cyhndroidal form occurs, excep-

tionally, in Solen. But Pecten, Gryphaea, Terebratula are all cases

of bivalve shells where one valve is flat and the other curved from

side to side ; and the flat valve tends to remain flat in the longitudinal

direction also, while the curved valve grows into its logarithmic

spiral.

In the genus Gryphaea, an oyster-hke bivalve from the Jurassic,

the creature lay on its side with' its left valve downward, as oysters

and scallops also do; and this valve adhered to the ground while

the animal was young. The upper valve stays flat, and looks Uke

a mere operculum; but the lower or deep valve grows into a more

or less pronounced spiral. So is it also in the neighbouring genus

Pecten, where P. Jacobaeus has its under-valve much deeper and

more curved than, say, P. opercularis
',

but Gryphaea incurva is

more spirally curved than any of these, and G. arcuata has a spiral

angle very near to that of Nautilus itself. In both the spiral is a

typical equiangular one, built up of a succession of gnomonic incre-

ments, which in turn depend on a constant ratio between the

expansion of a generating figure and its rotation about a centre

of simihtude. Rate of growth is at the root of the whole matter.

Now Gryphaea, Hke some Ammonites of which we spoke before, is
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one of those cases in which not only does the form of the shell

vary, but geologists recognise, now and then, a trend, or progressive

sequence of variation, from one stratum or one "horizon" to

anotlier. In short, as time goes on, we seem to see the shell growing

thicker or widey, or more and more spirally curved, before our

eyes. What meaning shall we give, what importance should we
assign, to these changes, and what sort or grade of evolution do
they imply? Some hold that these palaeontological features are

"strictly comparable with those on which the geneticist bases his

factorial studies"; and that as such they may shew "linkage of

characters," as when "in the evolution of Gryjphaea the area of

attachment retrogresses as the arching progresses"*. These are

debatable matters. But in so far as the changes depend on mere
gradations of magnitude, they lead indeed to variety but fall short

of the full concept of evolution. For to quote Aristotle once again

(though we need not go to Aristotle to learn it) : "some things shew

increase but suffer no alteration ; because increase is one thing and
alteration is another."

The so-called "spiral arms" of Spirifer and many other Brachio-

pods are not difficult to explain. They begin as a single structure,

in the form of a loop of shelly substance,

attached to the dorsal valve of the shell,

in the neighbourhood of the hinge, and

forming a skeletal support for two cihate

and tentaculate arms. These grow to a

considerable length, coiling up within the

shell that they may do so. In Terehratula

the loop reilaains short and simple, and is

merely flattened and distorted somewhat
by the restraining pressure of the ventral

valve ; but in Spirifer, Atrypa, Athyris and
•x / ^^^'^ Fig. 406. Skeletal loop of Terg-many more it forms a watchsprmg coil on j,^^^^ p^^^ ^^^^^^

either side, corresponding to the close-

coiled arms of which it was the support and skeleton. In these

curious and characteristic structures we see no sign of progressive

* H. H. Swinnerton, Unit characters in fossils, Biol. Reviews, vii, pp. 321-335,
1932; of. A. E. Truman, Oeol. Mag. lix, p. 258, lxi, p. 358, 1922-24.
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growth, no successional increments, no "gnomons," no self-

similarity in the figm:e. In short it has nothing to do with a

logarithmic or equiangular spiral, but is a mere twist, or tapering

helix, and it points now one way, now another. The cases in

which the heUcoid spires point towards, or point away from, the

middle line are ascribed, in zoological classification, to particular

"families" of Brachiopods, the former condition defining (or

helping to define) the Atrypidae and the latter the Spiriferidae

Fig. 407. Spiral arms of

Spirifer.

Fig. 408. Inwardly directed

spiral arms of Atrypa.

and Athyridae. It is obvious that the incipient curvature of the

arms, and consequently the form and direction of the spirals, will

be influenced by the surrounding pressures, and these in turn by

the general shape of the shell. We shall expect, accordingly, to

find the long outwardly directed spirals associated with shells which

are transversely elongated, as Spirifer is; while the more rounded

Atrypa will tend to the opposite condition. In a few cases, as in

Cyrtina or Reticularia* where the shell is comparatively narrow but

long, and where the uncoiled basal support of the arms is long also,

the coils into which the latter grow are turned backwards, in the

direction where there is most room for them. And in the few cases

where the shell is very considerably flattened, the spirals (if they

find room to grow at all) will be constrained to do so in a discoid

or nearly discoid fashion, and this is actually the case in such

flattened forms as Koninckina or Thecidium.

The shells of Pteropods

While mathematically speaking we are entitled to look upon

the bivalve shell of the Lamellibranch as consisting of two distinct

elements, each comparable to the entire shell of the univalve, we
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have no biological grounds for such a statement ; for the shell arises

from a single embryonic origin, and afterwards becomes spHt into

portions which constitute the two separate valves. \¥e can perhaps

throw some indirect light upon this phenomenon, and upon several

other phenomena connected with shell-growth, by a consideration

of the simple conical or tubular shells of the Pteropods. The shells

of the latter are in few cases suitable for simple mathematical

investigation, but nevertheless they are of very considerable interest

in connection with our general problem. The morphology of the

Pteropods is bv no means well understood, and in speaking of them

B
Fig. 410. Diagrammatic transverse sections, or

outlines ofthe mouth, in certain Pteropod shells:

Fig. 409. Pteropod shells: ^' ^' ^^^^^''^ australis; C, C. pyramidalis;

(1) Cuvierimi columnella;
D, CMUintium; E, C. cuspidata. After Boas.

(2) Cleodora chierchiae;

(3) C. pygmaea. After Boas.

I will assume that there are still grounds for beheving (in spite of

Boas' and Pelseneer's arguments) that they are directly related to,

or may at least be directly compared with, the Cephalopoda*.

The simplest shells among the Pteropods have the form of a tube,

more or less cylindrical {Cuvierinay, more often conical (Creseis,

Clio) ; and this tubular shell (as we have already had occasion to

remark, on p. 416), frequently tends, when it is very small and

delicate, to assume the character of an unduloid. (In such a case

it is more than likely that the tiny shell, or that portion of it which

* We need not assume a close relationship, nor indeed any more than such a

one as permits us to compare the shell of a Nautilus with that of a Gastropod.
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constitutes the unduloid, lias not grown by successive increments

or ''rings of growth," but has developed as a whole.) A thickened

"rib" is often, perhaps generally, present on thef dorsal side of the

little conical shell. In a few cases (Limacina, Peraclis) the tube

becomes spirally coiled, in a normal equiangular spiral or helico-

spiral.

In certain cases (e.g. Cleodora, Hyalaea) the tube or cone is curiously

modified. In the first place, its cross-section, originally circular

or nearly so, becomes flattened or compressed dorsoventrally ; and

3 -' 4

Fig. 411. Shells of thecosome Pteropods (after Boas). (1) Cleodora cuspidata;

(2) Hyalaea trispinosa; (3) H. globulosa; (4) H. uncinata; (5) H. inflexa.

the angle, or rather edge, where dorsal and ventral walls meet,

becomes more and more drawn out into a ridge or keel. Along the

free margin, both of the dorsal and the ventral portion of the shell,

growth proceeds with a regularly varying velocity, so that these

margins, or lips, of the shell become regularly curved or markedly

sinuous. At the same time, growth in a transverse direction pro-

ceeds with an acceleration which manifests itself in a curvature of

the sides, replacing the straight borders of the original cone. In

other words, the cross-section of the cone, or what we have been

calling the generating curve, increases its dimensions more rapidly

than its di^ance from the pole.
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In the above figures, for instance in that of Cleodora cicspidata,

the markings of the shell which represent the successive edges of

the lip at former stages of growth furnish us at once with a ''graph"

'Fig. 412. Cleodora ctispidata.

of the varying velocities of growth as measured, radially, from the

apex. We can reveal more clearly the nature of these variations

in the following way, which is simply tantamount to converting our

radial into rectangular coordinates. Neglecting curvature (if any)

b c d e f g Y

X O X
Fig. 413. Curves obtained by transforming radial ordinates, as in Fig. 412, into

vertical equidistant ordinates. 1, Hyalaea trispinosa; 2, Cleodora cicspidata.

of the sides and treating the shell (for simpUcity's sake) as a right

cone, we lay off equal angles from the apex 0, along the radii Oa,

Ob, etc. If we then plot, as vertical equidistant ordinates, the
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magnitudes Oa, Oh ... OY, and again on to Oa' , we obtain a diagram

such as follows in Fig. 413: by help of which we not only see

more clearly the way in which the growth-rate varies from point

to point, but we also recognise better than before the nature of the

law which governs this variation in the different species.

Furthermore, the young shell having become differentiated into

a dorsal and a ventral part, marked off from one another by a lateral

edge or keel, and the inequality of growth being such as to cause

each portion to increase most rapidly in the median line, it follows

that the entire shell will appear to have been split into a dorsal

and a ventral plate, both connected with, and projecting from,

what remains of the original undivided cone. Putting the same
thing in other words, we may say that the generating figure^ which

Fig. 414. Development of the shell of Hyalaea (Cavolinia) tridentata Forskal:

the earlier stages being the ''' Pleuropits longifiUs'' of Troschel. After Tesch.

lay at first in a plane perpendicular to the axis of the cone, has

now, by unequal growth, been sharply bent or folded, so as to lie

approximately in two planes, parallel to .the anterior and posterior

faces of the cone. We have only to imagine the apical connecting

portion to be further reduced, and finally to disappear or rupture,

and we should have a bivalve shell developed out- of the original

simple cone.

In its outer and growing portion, the shell of our Pteropod now
consists of two parts which, though still connected together at the

apex, may be treated as growing practically independently. The
shell is no longer a simple tube, or simple cone, in which regular

inequalitiies of growth will lead to the development of a spiral ; and
this for the simple reason that we have now two opposite maxima
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of growth, instead of a maximum on the one side and a minimum
on the other side of our tubular shell. As a matter of fact, the

dorsal and the ventral plate tend to curve in opposite directions,

towards the middle line, the dorsal curving ventrally and the ventral

curving towards the dorsal side.

In the case of the Lamelhbranch or the Brachiopod, it is quite

possible for both valves to grow into more or less pronounced spirals,

for the simple reason that they are hinged upon one another; and
each growing, edge, instead of being brought to a standstill by the

growth of its opposite neighbour, is free to move out of the way,

by the rotation about the hinge of the plane in which it Hes.

But where there is no such hinge, as in the Pteropod, the dorsal

and ventral halves of the shell (or dorsal and ventral valves, if we

Fig. 415. Pteropod shells, from the side: (1) Cleodora cnspidafa; (2) Hyalaea

longirostris; (3) H. trispinosa. After Boas.

may call them so) would soon interfere with one another's progress

if they curved towards one another (as they do in a cockle),

and the development of a pair of conjugate spirals would become

impossible. Nevertheless, there is obviously, in both dorsal and

ventral valve, a tendency to the development of a spiral curve, that

of the ventral valve being paore marked than that of the larger and

overlapping dorsal one, exactly as in the two unequal valves of

Terebratula, In many cases (e.g. Cleodora cuspidata), the dorsal

valve or plate, strengthened and stiffened by its midrib, is nearly

straight, while the curvature of the other is well displayed. But
the case will be materially altered and simplified if growth be arrested

or retarded in either half of the shell. Suppose for instance that

the dorsal valve grew so slowly that after a while, in comparison

with the other, we might speak of it as being absent altogether:
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or suppose that it merely became so reduced in relative size as to

form no impediment to the continued growth of the ventral one;

the latter would continue to grow in the direction of its natural

curvature, and would end by forming a complete and coiled

logarithmic spiral. It would be precisely analogous to the spiral

shell of Nautilus, and, in regard to its ventral position, concave

towards the dorsal side, it would even deserve to be called directly

homologous with it. Suppose, on the other hand, that the ventral

valve were to be greatly reduced, and even to disappear, the dorsal

valve would then pursue its unopposed growth; and, were it to be

markedly curved, it would come to form a logarithmic spiral, concave

towards the ventral side, as is the case in the shell of Spirula*.

Were the dorsal valve to be destitute of any marked curvature (or

in other words, to have but a low spiral angle), it would form a

simple plate, as in the shells of Sepia or Loligo. Indeed, in the

shells of these latter, and especially in that of Sepia, we seem to

recognise a manifest resemblance to the dorsal plate of the Pteropod

shell, as we have it (e.g.) in Cleodora or Hyalaea ; the Httle " rostrum
"

of Sepia is but the apex of the primitive cone, and the rounded

anterior extremity has grown according to a law precisely such as

that which has produced the curved margin of the dorsal valve in

the Pteropod. The ventral portion of the original cone is nearly,

but not wholly, wanting ; it is represented by the so-called posterior

wall of the "siphuncular space." In many decapod cuttle-fishes

also (e.g. Todarodes, Illex, etc.) we still see at the posterior end of

the "pen" a vestige of the primitive cone, whose dorsal ^nargin

only has continued to grow; and the same phenomenon, on an

exaggerated scale, is represented in the Belemnites.

It is not at all impossible that we may explain on the same lines

the development of the curious "operculum" of the Ammonites.

This consists of a single horny plate (Anaptychus), or of a thicker,

more calcified plate divided into two symmetrical halves (Aptychi),

often found inside the terminal chamber of the Ammonite, and

occasionally to be seen lying in situ, as an operculum which partially

closes the mouth of the shell ; this structure is known to exist even

* Cf. Owen, "These shells [Nautilus and Ammonites] are revolutely spiral or

coiled over the back of the animal, not involute like Spirula^': Palaeontology,

1861, p. 97; cf. Memoir cm the Pearly Nautilus, 4832; also P.Z.S. 1878, p. 95.5.
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in connection with the early embryonic shell. In form the Anap-
tychus, or the pair of conjoined Aptychi, shew an upper and a lower

border, the latter strongly convex, the former sometimes shghtly

concave, sometimes shghtly convex, and usually shewing a median

projection or slightly developed rostrum. From this rostral

border the curves of growth start, and course round parallel to,

finally constituting, the convex border. It is this convex border

which fits into the free margin of the mouth of the Ammonite's
shell, while the other is appHed to and overlaps the preceding whorl

of the spire. Now this relationship is precisely what we should

expect, were we to imagine as our starting-point a shell similar to

that of Hyalaea : in which however the dorsal part of the split cone

had become separate from the ventral half, had remained fiat, and
had grown comparatively slowly, while at the same time it kept

slipping forward over the growing and coiUng spire into which the

ventral half of the original shell develops*. In short, I think there

is reason to believe, or at least to suspect, that we have in the shell

and Aptychus of the Ammonites, two portions of a once united

structure; of which other Cephalopods retain not both parts but

only one or other, one as the ventrally situated shell of Nautilus,

the other as the dorsally plated shell for example of Sepia or of

Spirula.

In the case of the bivalv-e shells of the Lamellibranchs or of the

Brachiopods, we have to deal w^ith a phenomenon precisely analogous

to the split and flattened cone of our Pteropods, save only that the

primitive cone has been split into two portions, not incompletely,

as in the Pteropod {Hyalaea), but completely, so as to forin two

separate valves. Though somewhat greater freedom is given to

growth now that the two valves are separate and hinged, yet still

the two valves oppose and hamper one another, so that in the

longitudinal direction each is capable of only a moderate curvature.

This curvature, as we have seen, is recognisable as an equiangular

spiral, but only now and then does the growth of the spiral continue

so far as to develop successive coils : as it does in a few symmetrical

forms such as Isocardia cor ; and as it does still more conspicuously

in a few others, such as Gryphaea and Caprinella, where one of the

* The case of Terebratula or of Gryphaea would be closely analogous, if the smaller

valve were less closely connected and co-articulated with the larger.
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two valves is stunted, and the growth of the other is (relatively

speaking) unopposed.

Of septa

Before we leave the subject of the molluscan shell, we have still

another problem to deal with, in regard to the form and arrangement

of the septa which divide up the tubular shell into chambers, in

the Nautilus, the Ammonite and their allies.

The existence of septa in a nautiloid shell may probably be

accounted for as follows. We have seen that it is a property of

a cone that, while growing by increments at one end only, it con-

serves its original shape : therefore the animal within, which (though

growing by a different law) also conserves its shape, will continue

to fill the shell if it actually fills it to begin with: as does a snail

or other Gastropod. But suppose that our mollusc fills a part only

of a conical shell (as it does in the case of Nautilus) ; then, unless

it alter its shape, it must move upward as it grows in the growing

con^, until it comes to occupy a space similar in form to that which

it occupied before: just, indeed, as a little ball drops far down into

the cone, but a big one must stay farther up. Then, when the

animal after a period of growth has moved farther up in the shell, the

mantle-surface continues or resumes its secretory activity, and that

portion which had been in contact with' the former septum secretes

a septum anew. In short, at any given epoch, the creature is not

secreting a tube and a septum by separate operations, but is secreting

a shelly case about its rounded body, of which case one part appears

as the continuation of the tube, and the other part, merging with it

by indistinguishable boundaries, appears as the septum*.

The various- forms assumed by the septa in spiral shells | present

us with a number of problems of great beauty, simple in their

essence, but whose full investigation would soon lead us into difficult

mathematics.

* "It has been suggested, and I think in some quarters adopted as a dogma,
that the formation of successive septa [in Nautilus] is correlated with the recurrence

of reproductive periods. This is not the case, since, according to my observations,

propagation only takes place after the last septum is formed"; Willey, Zoological

Results, 1902, p. 746.

f Cf. Henry Woodward, On the structure of camerated shells, Pop. Sci. Rev.

XI, pp. 113-120, 1872.
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We do not know how these septa are laid down in an Ammonite,
but in the Nautilus the essential facts are clear *. The septum begins

as a very thin cuticular membrane (composed of a substance called

conchjolin), which is secreted by the skin, or mantle-surface, of the

animal ; and upon this membrane nacreous matter is gradually laid

down on the mantle-side (that is to say between the animal's' body
and the cuticular membrane which has been thrown off from it),

so that the membrane remains as a thin pellicle over the hinder

surface of the septum, and so that, to begin with, th.e membranous
septum is moulded on the flexible and elastic surface of the animal,

within which the fluids of the body must exercise a uniform, or

nearly uniform pressure.

Let us think, then, of the septa as they would appear in their

uncalcified condition, formed of, or at least superposed upon, an

elastic membrane. They must follow the general law, applicable

to all elastic membranes under uniform pressure, that the tension

varies inversely as the radius of curvature ; and we come back once

more to our old equation of Laplace and Plateau, that

p = r ^r^v]
Moreover, since the cavity below the septum is practically closed,

and is filled either with air or with water, P will be constant over

the whole area of the septum. And further, we must assume, at

least to begin with, that the membrane constituting the incipient

septum is homogeneous or isotropic.

Let us take first the case of a straight cone, of circular section,

more or less like an Orthoceras ; and let us suppose that the septum

is attached to the shell in a plane perpendicular to its axis. The
septum itself must then obviously be spherical. Moreover the extent

of the spherical surface is constant, and easily determined. For

obviously, in Fig. 417, the angle LCL' equals the supplement of

the angle (LOU) of the cone; that is to say, the circle of contact

subtends an angle at the centre of the spherical surface, which is

constant, and which is equal to tt — 2/?. The case is not excluded

where, owing to an asymmetry of tensions, the septum meets the

* See Willey, op. cit., p. 749. Cf. also Bather, Shell-growth in Cephalopoda,

Ann. Mag. N.H. (6), i, pp. 298-310, 1888; ibid. pp. 421-427, and other papers by
Blake, Riefstahl, etc. quoted therein.
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side walls of the cone at other than a right angle, as in Fig. 416; and

here, while the septa still remain portions of spheres, the geometrical

construction for the position of their centres is equally easy.

If, on the other hand, the attachment of the septum to the' inner

walls of the cone be in a plane oblique to the axis, then the outhne of

the septum will be an elhpse, but its surface will still be spheroidal. If

Fig. 41fi.

the attachment of the septum be not in one plane, but forms a sinuous

line of contact with the cone, then the septum will be a saddle-shaped

surface, of great complexity and beauty. In all cases, provided only

that the membrane be isotropic, the form assumed will be precisely

that of a soap-bubble under similar conditions of attachment : that

is to say, it will be (with the usual limitations or conditions) a surface

of minimal area, and of constant mean curvature.

If our cone be no longer straight, but curved, then the septa will

by symmetrically deformed in consequence. A beautiful and in-

teresting case is afforded us by Nautilus itself. Here the outline

of the septum, referred to a plane, is approximately bounded by
two elliptic curves, similar and similarly situated, whose areas are

to one another in a definite ratio, namely as

A_^l^'l_ 4^C0ta

^a ^2^ 2

and a similar ratio exists in Ammonites and all other close-whorled

spirals, in whi^h however we cannot always make the simple
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assumption of elliptical form. In a median section of Nautilus, we
see each septum forming a tangent to the inner and to the outer

wall, just as it did in a section of the strsiight Orthoceras; but the

Fig. 418. Section of Xaufilus, shewing the contour of the septa

in the median plane.

curvatures in the neighbourhood of these two points of contact are

not identical, for they now vary inversely as the radii, drawn from

the pole of the spiral shell. The contour of the septum in this

median plane is a spiral curve—the conformal spiral transformation

of the spherical septum of the rectihnear Orthoceratite.
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But while the outline of the septum in median section is simple

and easy to determine, the curved surface of the septum in its

entirety is a very complicated matter, even in Nautilus which is

one of the simplest of actual cases. For, in the first place, since

the form of the septum, as seen in median section, is that of a

logarithmic spiral, and as therefore its curvature is constantly

Fig. 419. C&,Bi oi the mteviov oi Nautilus-, to shew the contours of

the septa at their junction with the shell-waU.

altering, it follows that, in successive transverse sections, the curva-

ture is also constantly altering. But in the case of Nautilus, there

are other aspects of the phenomenon, which we can illustrate, but

only in part, in the following simple manner. Let us imagine a ^ack

of cards, in which we have cut out of each card a similar concave

arc of a logarithmic spiral, such as we actually see in the median

section of the septum of a Nautilus. Then, while we hold the cards

together, foursquare, in the ordinary position of the pack, we have

a simple ''ruled" surface, which in any longitudinal section has the
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form of a logarithmic spiral but in any transverse section is a straight

horizontal line. If we shear or slide the cards upon one. another,

thrusting the middle cards of the pack forward in advance of the

others, till the one end of the pack is a convex, and the other a

concave, elUpse, the cut edges which combine to represent our

septum will now form a curved surface of much greater complexity

;

and this is part, but not by any means all, of the deformation

produced as a direct consequence of the form in Nautilus of the

section of the tube within which the septum has to He. The

complex curvature of the surface will be manifested in a sinuous

outline of the edge, or line of attachment of the septum to the tube,

and will vary according to the configuration of the latter. In the

case of Nautilus, it is easy to shew empirically (though not perhaps

easy to demonstrate mathematically), that the sinuous or saddle-

shaped contour of the " suture" (or line of attachment of the septum

to the tube) is such as can be precisely accounted for in this manner

;

and we may find other forms, such as Ceratites, where the septal

outline is only a httle more sinuous, and still precisely analogous

to that of Nautilus. It is also easy to see that, when the section of

the tube (or "generating curve") is more comphcated in form, when
it is flattened, grooved, or otherwise ornamented, the curvature of the

septum and the outline of its sutural attachment will become very

complicated indeed * ; but it will be comparatively simple in the "case

of the first few sutures of the young shell, laid down before any over-

lapping of whorls has taken place, and this comparative simplicity of

the first-formed sutures is a marked feature among Ammonites f.

* The "lobes" and "saddles" which arise in this manner, and on whose arrange-

ment the modern classification of the nautiloid and ammonitoid shells largely

depends, were first recognised and named by Leopold von Buch, Ann. Sci. Nat.

XXVII, xxvni, 1829.

t Blake has remarked upon the fact (op. cit. p. 248) that in some Cyrtocerata

we may have a curved shell in which the ornaments approximately run at a constant

angular distance from the pole, while the septa approximate to a radial direction;

and that "thus one law of growth is illustrated by the inside, and another by the

outside." In this there is nothing at which we need wonder. It is merely a case

where the generating curve is set very obliquely to the axis of the shell ; but where

the septa, which have no necessary relation to the mouth of the shell, take their

places, as usual, at a certain definite' angle to the walls of the tube. This relation

of the septa to the walls of the tube arises after the tube itself is fully formed,

and the obliquity of growth of the open end of the tube has no relation to the

matter.
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We have other sources of complication, besides those which are

at once .introduced by the sectional form of the tube. For instance,

th'e siphuncle, or little inner tube which perforates the septa, exercises

a certain amount of tension, sometimes evidently considerable, upon

the latter: which tension is made manifest in Spirula (and slightly

so even in Nautilus) by a dip in the septal floor where it meets the

siphuncle. We can no longer, then, consider each septum as an

isotropic surface under uniform pressure; and there may be other

structural modifications, or inequalities, in that portion of the

Fig. 420. Ammonites Sowerbyi. From Zittel.

animal's body with which the septum is in contact, and by which

it is conformed. It is hardly likely, for all these reasons, tha»t we
shall ever attain to a full and particular explanation of the septal

surfaces and their sutural outlines throughout the whole range of

Cephalopod shells; but in general terms, the problem is probably

not beyond the reach of mathematical analysis. The problem might

be approached experimentally, after the manner of Plateau's experi-

ments, by bending a wire into the complicated^ form of the suture-line,

and studying the form of the liquid film which constitutes the

corresponding surface 'minimae areae.

In certain Ammonites the septal outline is further complicatec"

in another way. Superposed upon the usual sinuous outline, witl
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its "lobes" and "saddles," we have here- a minutely ramified, or

arborescent outline, in which all the branches terminate in wavy,

more or less circular arcs—looking just like the "landscape marble"

from the Bristol Rhaetic. We have no difficulty in recognising in

this a surface-tension phenomenon. The figures are precisely such

as we can imitate (for instance) by pouring a few drops of milk

upon a greasy plate, or of oil upon an alkaUne solution*; they are

what Charles Tomlinson called "cohesion figures."

Fig. 421. Suture-line of a Triassic Ammonite {Pinacoceras). From Zittel.

We must not forget that while the nautilus and the ammonite
resemble one another, and are mathematically identical in their

spiral curves, they are really very different things. The one is an
external, the other an internal shell. The nautilus occupies the

large terminal chamber of the many-chambered shell, and "Still

as the spiral grew. He left the past year's dwelling for the new."

But even the largest ammonites never contained the body of the

animal, but lay hidden, as Spirula does, deep within the substance

of the mantle. How the comphcated septa and septal outHnes of

the ammonites are produced I do not knowt.

We have very far from exhausted, we have perhaps little more
than begun, the study of the logarithmic spiral and the associated

curves which find exemplification in the multitudinous diversities

of molluscan shells. But, with a closing word or two, we must
now bring this chapter to an end.

* "The Fimbriae, or Edges, appeared on the Surface like the Outlines of some
curious Foliage. This, upon Examination of them, I found to proceed from the

Fulness of the Edges of the Diaphragms, whereby the Edges were waved or plaited

somewhat in the manner of a Ruff" (R. Hooke, op. cit.).

t In certain rare cases the complicated sutural pattern of an ammonite is found

upside down, but unchanged otherwise. Cf. Otto Haas, A case of inversion of

suture hues in Hysteroceras, Amer. Jl. of Sci. ccxxxix, p. 661, 1941.
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In the spiral shell we have a problem, or a phenomenon, of growth,

immensely simplified by the fact that each successive increment is

no sooner formed than it is fixed irrevocably, instead of remaining

in a state of flux and sharing in the further changes which the

organism undergoes. In such a structure, then, we have certain

primary phenomena of growth manifested in their original simplicity,

undisturbed by secondary and conflicting phenomena. What actually

grows is merely the lip of an orifice, where there is produced a ring

of solid material, whose form we have discussed under the name of

the generating curve ; and this generating curve grows in magnitude

without alteration of its form. Besides its increase in areal magnitude,

the growing curve has certain strictly limited degrees of freedom,

which define its motions in space. And, though we may know nothing

whatsoever about the actual velocities of any of these motions, we

do know that they are so correlated together that their relative

velocities remain constant, and accordingly the form and symmetry

of the whole system remain in general unchanged.

But there is a vast range of possibilities in regard to every one

of these factors : the generating curve may be of various forms, and

even when of simple form, such as an elhpse, its axes may be s4t

at various angles to the system; the plane also in which it lies

may vary, almost indefinitely, in its angle relatively to that of any

plane of reference in the system; and in the several velocities of

growth, of rotation and of translation, and therefore in the ratios

between all these, we have again a vast range of possibihties. We
have then a certain definite type, or group of forms, mathematically

isomorphous, but presenting infinite diversities of outward appear-

ance: which diversities, as Swammerdam said, ex sola nascuntur

diversitate gyrationum ; and which accordingly are seen to have their

origin in differences of rate, or of magnitude, and so to be, essentially,

neither more nor less than differences, of degree.

In nature, we find these forms presenting themselves with but little

relation to the character of the creature by which they are produced.

Spiral forms of certain particular kinds are common to Gastropods and

to Cephalopods, and to diverse famihes of each ; while outside the class

of molluscs altogether, among the Foraminifera and among the worms
(as in Spirorbis, Spirographis, and in the Dentalium-like shell of

Ditrupa), we again meet with similar and corresponding spirals.
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Again, we find the same forms, or forms which (save for external

ornament) are mathematically identical, repeating themselves in all

periods of the world's geological history; and we see them mixed
up, one with another, irrespective of cHmate or local conditions, in

the depths and on' the shores of every sea. It is hard indeed (to

my mind) to see in such a case as this where Natural Selection

necessarily enters in, or to admit that it has had any share what-

soever in the production of these varied conformations. Unless

indeed we use. .the term Natural Selection in a sense so wide as to

deprive it of any purely biological significance; and so recognise

as a sort of natural selection whatsoever nexus of causes suffices

to differentiate between the likely and the unlikely, the scarce and
the frequent, the easy and the hard: and leads accordingly, under

the pecuhar conditions, limitations and restraints which we call

"ordinary circumstances," one type of crystal, one form of cloud,

one chemical compound, to be of frequent occurrence and another

to be rare*.

* Cf. Bacon, Advancement of Learning, Bk. ii (p. 254) :
" Doth any give the reason,

why some things in nature are so common and in so great mass, and others so rare

and in so small quantity?"


